SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pingitore Piero 1986) "

Sökning: WFRF:(Pingitore Piero 1986)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burza, Maria Antonella, 1980, et al. (författare)
  • DEPDC5 variants increase fibrosis progression in Europeans with chronic HCV infection.
  • 2016
  • Ingår i: Hepatology (Baltimore, Md.). - : Ovid Technologies (Wolters Kluwer Health). - 1527-3350 .- 0270-9139. ; 63:2, s. 418-427
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic hepatitis C virus (HCV) infection may progress to cirrhosis and hepatocellular carcinoma (HCC). Recently, two genetic variants, DEPDC5 rs1012068 and MICA rs2596542, were associated with the onset of HCC in Asian subjects with chronic HCV infection. The aim of the present study was to analyze whether DEPDC5 and MICA genetic variants were associated with liver disease progression in Europeans with chronic HCV infection. In a Northern Italian discovery cohort (n=477), neither DEPDC5 rs1012068 nor MICA rs2596542 were associated with HCC (n=150). However, DEPDC5 rs1012068 was independently associated with cirrhosis (n=300; p=0.049). The association of rs1012068 with moderate-severe fibrosis was confirmed in an independent cross-sectional German cohort (n=415; p=0.006). Furthermore, DEPDC5 rs1012068 predicted faster fibrosis progression in a prospective cohort (n=247; p=0.027). Next, we examined the distribution of non-synonymous DEPDC5 variants in the overall cross-sectional cohort (n=912). The presence of at least one variant increased the risk of moderate/severe fibrosis by 54% (p=0.040). To understand the molecular mechanism underlying the genetic association of DEPDC5 variants with fibrosis progression, we performed in vitro studies on immortalized hepatic stellate cells (LX-2). In these cells, down-regulation of DEPDC5 resulted in increased expression of β-catenin and production of its target matrix metallopeptidase 2 (MMP2), a secreted enzyme involved in fibrosis progression.
  •  
2.
  • Caddeo, Andrea, et al. (författare)
  • LPIAT1/MBOAT7 contains a catalytic dyad transferring polyunsaturated fatty acids to lysophosphatidylinositol.
  • 2021
  • Ingår i: Biochimica et biophysica acta. Molecular and cell biology of lipids. - : Elsevier BV. - 1879-2618 .- 1388-1981. ; 1866:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Human membrane bound O-acyltransferase domain-containing 7 (MBOAT7), also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1), is an enzyme involved in the acyl-chain remodeling of phospholipids via the Lands' cycle. The MBOAT7 rs641738 variant has been associated with the entire spectrum of fatty liver disease (FLD) and neurodevelopmental disorders, but the exact enzymatic activity and the catalytic site of the protein are still unestablished. Human wild type MBOAT7 and three MBOAT7 mutants missing in the putative catalytic residues (N321A, H356A, N321A+H356A) were produced into Pichia pastoris, and purified using Ni-affinity chromatography. The enzymatic activity of MBOAT7 wild type and mutants was assessed measuring the incorporation of radiolabeled fatty acids into lipid acceptors. MBOAT7 preferentially transferred 20:4 and 20:5 polyunsaturated fatty acids (PUFAs) to lysophosphatidylinositol (LPI). On the contrary, MBOAT7 showed weak enzymatic activity for transferring saturated and unsaturated fatty acids, regardless the lipid substrate. Missense mutations in the putative catalytic residues (N321A, H356A, N321A+H356A) result in a loss of O-acyltransferase activity. Thus, MBOAT7 catalyzes the transfer of PUFAs to lipid acceptors. MBOAT7 shows the highest affinity for LPI, and missense mutations at the MBOAT7 putative catalytic dyad inhibit the O-acyltransferase activity of the protein. Our findings support the hypothesis that the association between the MBOAT7 rs641738 variant and the increased risk of NAFLD is mediated by changes in the hepatic phosphatidylinositol acyl-chain remodeling. Taken together, the increased understanding of the enzymatic activity of MBOAT7 give insights into the understanding on the basis of FLD.
  •  
3.
  • Caddeo, Andrea, et al. (författare)
  • MBOAT7 is anchored to endomembranes by six transmembrane domains.
  • 2019
  • Ingår i: Journal of structural biology. - : Elsevier BV. - 1095-8657 .- 1047-8477. ; 206:3, s. 349-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane bound O-acyltransferase domain- containing 7 (MBOAT7, also known as LPIAT1) is a protein involved in the acyl chain remodeling of phospholipids via the Lands' cycle. The MBOAT7 is a susceptibility risk genetic locus for non-alcoholic fatty liver disease (NAFLD) and mental retardation. Although it has been shown that MBOAT7 is associated to membranes, the MBOAT7 topology remains unknown. To solve the topological organization of MBOAT7, we performed: A) solubilization of the total membrane fraction of cells overexpressing the recombinant MBOAT7-V5, which revealed MBOAT7 is an integral protein strongly attached to endomembranes; B) in silico analysis by using 22 computational methods, which predicted the number and localization of transmembrane domains of MBOAT7 with a range between 5 and 12; C) in vitro analysis of living cells transfected with GFP-tagged MBOAT7 full length and truncated forms, using a combination of Western Blotting, co-immunofluorescence and Fluorescence Protease Protection (FPP) assay; D) in vitro analysis of living cells transfected with FLAG-tagged MBOAT7 full length forms, using a combination of Western Blotting, selective membrane permeabilization followed by indirect immunofluorescence. All together, these data revealed that MBOAT7 is a multispanning transmembrane protein with six transmembrane domains. Based on our model, the predicted catalytic dyad of the protein, composed of the conserved asparagine in position 321 (Asn-321) and the preserved histidine in position 356 (His-356), has a lumenal localization. These data are compatible with the role of MBOAT7 in remodeling the acyl chain composition of endomembranes.
  •  
4.
  • Caddeo, Andrea, et al. (författare)
  • Molecular analysis of three known and one novel LPL variants in patients with type I hyperlipoproteinemia.
  • 2018
  • Ingår i: Nutrition, metabolism, and cardiovascular diseases : NMCD. - : Elsevier BV. - 1590-3729 .- 0939-4753. ; 28, s. 158-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Type I hyperlipoproteinemia, also known as familial chylomicronemia syndrome (FCS), is a rare autosomal recessive disorder caused by variants in LPL, APOC2, APOA5, LMF1 or GPIHBP1 genes. The aim of this study was to identify novel variants in the LPL gene causing lipoprotein lipase deficiency and to understand the molecular mechanisms.A total of 3 individuals with severe hypertriglyceridemia and recurrent pancreatitis were selected from the Lipid Clinic at Sahlgrenska University Hospital and LPL was sequenced. Invitro experiments were performed in human embryonic kidney 293T/17 (HEK293T/17) cells transiently transfected with wild type or mutant LPL plasmids. Cell lysates and media were used to analyze LPL synthesis and secretion. Media were used to measure LPL activity. Patient 1 was compound heterozygous for three known variants: c.337T>C (W113R), c.644G>A (G215E) and c.1211T>G (M404R); patient 2 was heterozygous for the known variant c.658A>C (S220R) while patient 3 was homozygous for a novel variant in the exon 5 c.679G>T (V227F). All the LPL variants identified were loss-of-function variants and resulted in a substantial reduction in the secretion of LPL protein.We characterized at the molecular level three known and one novel LPL variants causing type I hyperlipoproteinemia showing that all these variants are pathogenic.
  •  
5.
  • Donati, Benedetta, et al. (författare)
  • Telomerase reverse transcriptase germline mutations and hepatocellular carcinoma in patients with nonalcoholic fatty liver disease.
  • 2017
  • Ingår i: Cancer medicine. - : Wiley. - 2045-7634. ; 6:8, s. 1930-1940
  • Tidskriftsartikel (refereegranskat)abstract
    • In an increasing proportion of cases, hepatocellular carcinoma (HCC) develops in patients with nonalcoholic fatty liver disease (NAFLD). Mutations in telomerase reverse transcriptase (hTERT) are associated with familial liver diseases. The aim of this study was to examine telomere length and germline hTERT mutations as associated with NAFLD-HCC. In 40 patients with NAFLD-HCC, 45 with NAFLD-cirrhosis and 64 healthy controls, peripheral blood telomere length was evaluated by qRT-PCR and hTERT coding regions and intron-exon boundaries sequenced. We further analyzed 78 patients affected by primary liver cancer (NAFLD-PLC, 76 with HCC). Enrichment of rare coding mutations (allelic frequency <0.001) was evaluated by Burden test. Functional consequences were estimated in silico and by over-expressing protein variants in HEK-293 cells. We found that telomere length was reduced in individuals with NAFLD-HCC versus those with cirrhosis (P=0.048) and healthy controls (P=0.0006), independently of age and sex. We detected an enrichment of hTERT mutations in NAFLD-HCC, that was confirmed when we further considered a larger cohort of NAFLD-PLC, and was more marked in female patients (P=0.03). No mutations were found in cirrhosis and local controls, and only one in 503 healthy Europeans from the 1000 Genomes Project (allelic frequency=0.025 vs. <0.001; P=0.0005). Mutations with predicted functional impact, including the frameshift Glu113Argfs*79 and missense Glu668Asp, cosegregated with liver disease in two families. Three patients carried missense mutations (Ala67Val in homozygosity, Pro193Leu and His296Pro in heterozygosity) in the N-terminal template-binding domain (P=0.037 for specific enrichment). Besides Glu668Asp, the Ala67Val variant resulted in reduced intracellular protein levels. In conclusion, we detected an association between shorter telomeres in peripheral blood and rare germline hTERT mutations and NAFLD-HCC.
  •  
6.
  • Donati, Benedetta, et al. (författare)
  • The rs2294918 E434K variant modulates PNPLA3 expression and liver damage.
  • 2016
  • Ingår i: Hepatology (Baltimore, Md.). - : Ovid Technologies (Wolters Kluwer Health). - 1527-3350 .- 0270-9139. ; 63:3, s. 787-798
  • Tidskriftsartikel (refereegranskat)abstract
    • The PNPLA3 rs738409 polymorphism (I148M) is a major determinant of hepatic fat and predisposes to the full spectrum of liver damage in nonalcoholic fatty liver disease (NAFLD). Aim of this study was to evaluate whether additional PNPLA3 coding variants contribute to NAFLD susceptibility, first in individuals with contrasting phenotypes (with early onset NAFLD vs. very low aminotransferases), and then in a large validation cohort. Rare PNPLA3 variants were not detected by sequencing coding regions and intron-exon boundaries either in 142 patients with early-onset NAFLD, nor in 100 healthy individuals with ALT <22/20 IU/ml. Besides rs738409 I148M, the rs2294918 G>A polymorphism (E434K sequence variant) was over-represented in NAFLD (adjusted p=0.01). In 1447 subjects with and without NAFLD, the 148M-434E (p<0.0001), but not the 148M-434K haplotype (p>0.9), was associated with histological NAFLD and steatohepatitis. Both the I148M (p=0.0002) and E434K variants (p=0.044) were associated with serum ALT levels, by interacting each other, in that the 434K hampered the association with liver damage of the 148M allele (p=0.006). The E434K variant did not affect PNPLA3 enzymatic activity, but carriers of the rs2294918 A allele (434K) displayed lower hepatic PNPLA3 mRNA and protein levels (p<0.05).
  •  
7.
  • Dongiovanni, P, et al. (författare)
  • Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver.
  • 2018
  • Ingår i: Journal of internal medicine. - : Wiley. - 1365-2796 .- 1365-2796 .- 0954-6820. ; 283:4, s. 356-370
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease is epidemiologically associated with hepatic and metabolic disorders. The aim of this study was to examine whether hepatic fat accumulation has a causal role in determining liver damage and insulin resistance.We performed a Mendelian randomization analysis using risk alleles in PNPLA3, TM6SF2, GCKR and MBOAT7, and a polygenic risk score for hepatic fat, as instruments. We evaluated complementary cohorts of at-risk individuals and individuals from the general population: 1515 from the liver biopsy cohort (LBC), 3329 from the Swedish Obese Subjects Study (SOS) and 4570 from the population-based Dallas Heart Study (DHS).Hepatic fat was epidemiologically associated with liver damage, insulin resistance, dyslipidemia and hypertension. The impact of genetic variants on liver damage was proportional to their effect on hepatic fat accumulation. Genetically determined hepatic fat was associated with aminotransferases, and with inflammation, ballooning and fibrosis in the LBC. Furthermore, in the LBC, the causal association between hepatic fat and fibrosis was independent of disease activity, suggesting that a causal effect of long-term liver fat accumulation on liver disease is independent of inflammation. Genetically determined hepatic steatosis was associated with insulin resistance in the LBC and SOS. However, this association was dependent on liver damage severity. Genetically determined hepatic steatosis was associated with liver fibrosis/cirrhosis and with a small increase in risk of type 2 diabetes in publicly available databases.These data suggest that long-term hepatic fat accumulation plays a causal role in the development of chronic liver disease.
  •  
8.
  • Lind, Ulrika, et al. (författare)
  • Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation. © 2017 Lind et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
9.
  • Lindén, Daniel, 1971, et al. (författare)
  • Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice.
  • 2019
  • Ingår i: Molecular metabolism. - : Elsevier BV. - 2212-8778. ; 22:April, s. 49-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is becoming a leading cause of advanced chronic liver disease. The progression of NAFLD, including nonalcoholic steatohepatitis (NASH), has a strong genetic component, and the most robust contributor is the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 encoding the 148M protein sequence variant. We hypothesized that suppressing the expression of the PNPLA3 148M mutant protein would exert a beneficial effect on the entire spectrum of NAFLD.We examined the effects of liver-targeted GalNAc3-conjugated antisense oligonucleotide (ASO)-mediated silencing of Pnpla3 in a knock-in mouse model in which we introduced the human PNPLA3 I148M mutation.ASO-mediated silencing of Pnpla3 reduced liver steatosis (p=0.038) in homozygous Pnpla3 148M/M knock-in mutant mice but not in wild-type littermates fed a steatogenic high-sucrose diet. In mice fed a NASH-inducing diet, ASO-mediated silencing of Pnpla3 reduced liver steatosis score and NAFLD activity score independent of the Pnpla3 genotype, while reductions in liver inflammation score (p=0.018) and fibrosis stage (p=0.031) were observed only in the Pnpla3 knock-in 148M/M mutant mice. These responses were accompanied by reduced liver levels of Mcp1 (p=0.026) and Timp2 (p=0.007) specifically in the mutant knock-in mice. This may reduce levels of chemokine attracting inflammatory cells and increase the collagenolytic activity during tissue regeneration.This study provides the first evidence that a Pnpla3 ASO therapy can improve all features of NAFLD, including liver fibrosis, and suppress the expression of a strong innate genetic risk factor, Pnpla3 148M, which may open up a precision medicine approach in NASH.
  •  
10.
  • M, Botta, et al. (författare)
  • Deciphering the role of V200A and N291S mutations leading to LPL deficiency.
  • 2019
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 1879-1484 .- 0021-9150. ; 282, s. 45-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Type I hyperlipoproteinemia is an autosomal recessive disorder of lipoprotein metabolism caused by mutations in the LPL gene, with an estimated prevalence in the general population of 1 in a million. In this work, we studied the molecular mechanism of two known mutations in the LPL gene in ex vivo and in vitro experiments and also the effect of two splice site mutations in ex vivo experiments.Two patients with hypertriglyceridemia were selected from the Lipid Clinic in Vienna. The first patient was compound heterozygote for c.680T>C (exon 5; p.V200A) and c.1139+1G>A (intron 7 splice site). The second patient was compound heterozygote for c.953A>G (exon 6; p.N291S) and c.1019-3C>A (intron 6 splice site). The LPL gene was sequenced and post-heparin plasma samples (ex vivo) were used to test LPL activity. In vitro experiments were performed in HEK 293T/17cells transiently transfected with wild type or mutant LPL plasmids. Cell lysate and media were used to evaluate LPL production, secretion, activity and dimerization by Western blot analysis and LPL enzymatic assay, respectively.Our data show that in both patients, LPL activity is absent. V200A is a mutation that alters LPL secretion and activity whereas the N291S mutation affects LPL activity, but both mutations do not affect dimerization. The effect of these mutations in patients is more severe since they have splice site mutations on the other allele.We characterized these LPL mutations at the molecular level showing that are pathogenic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy