SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pinto Yigal M.) "

Sökning: WFRF:(Pinto Yigal M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Troughton, Richard W., et al. (författare)
  • Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization : an individual patient meta-analysis
  • 2014
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 35:23, s. 1559-1567
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Natriuretic peptide-guided (NP-guided) treatment of heart failure has been tested against standard clinically guided care in multiple studies, but findings have been limited by study size. We sought to perform an individual patient data meta-analysis to evaluate the effect of NP-guided treatment of heart failure on all-cause mortality. Methods and results ligible randomized clinical trials were identified from searches of Medline and EMBASE databases and the Cochrane Clinical Trials Register. The primary pre-specified outcome, all-cause mortality was tested using a Cox proportional hazards regression model that included study of origin, age (less than 75 or greater than= 75 years), and left ventricular ejection fraction (LVEF, less than= 45 or greater than 45%) as covariates. Secondary endpoints included heart failure or cardiovascular hospitalization. Of 11 eligible studies, 9 provided individual patient data and 2 aggregate data. For the primary endpoint individual data from 2000 patients were included, 994 randomized to clinically guided care and 1006 to NP-guided care. All-cause mortality was significantly reduced by NP-guided treatment [hazard ratio = 0.62 (0.45-0.86); P = 0.004] with no heterogeneity between studies or interaction with LVEF. The survival benefit from NP-guided therapy was seen in younger (less than 75 years) patients [0.62 (0.45-0.85); P = 0.004] but not older (greater than= 75 years) patients [0.98 (0.75-1.27); P = 0.96]. Hospitalization due to heart failure [0.80 (0.67-0.94); P = 0.009] or cardiovascular disease [0.82 (0.67-0.99); P = 0.048] was significantly lower in NP-guided patients with no heterogeneity between studies and no interaction with age or LVEF. Conclusion Natriuretic peptide-guided treatment of heart failure reduces all-cause mortality in patients aged less than 75 years and overall reduces heart failure and cardiovascular hospitalization.
  •  
2.
  • Brunner-La Rocca, Hans-Peter, et al. (författare)
  • Which heart failure patients profit from natriuretic peptide guided therapy? A meta-analysis from individual patient data of randomized trials.
  • 2015
  • Ingår i: European Journal of Heart Failure. - : Wiley. - 1388-9842 .- 1879-0844. ; 17:12, s. 1252-1261
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Previous analyses suggest that heart failure (HF) therapy guided by (N-terminal pro-)brain natriuretic peptide (NT-proBNP) might be dependent on left ventricular ejection fraction, age and co-morbidities, but the reasons remain unclear.METHODS AND RESULTS: To determine interactions between (NT-pro)BNP-guided therapy and HF with reduced [ejection fraction (EF) ≤45%; HF with reduced EF (HFrEF), n = 1731] vs. preserved EF [EF > 45%; HF with preserved EF (HFpEF), n = 301] and co-morbidities (hypertension, renal failure, chronic obstructive pulmonary disease, diabetes, cerebrovascular insult, peripheral vascular disease) on outcome, individual patient data (n = 2137) from eight NT-proBNP guidance trials were analysed using Cox-regression with multiplicative interaction terms. Endpoints were mortality and admission because of HF. Whereas in HFrEF patients (NT-pro)BNP-guided compared with symptom-guided therapy resulted in lower mortality [hazard ratio (HR) = 0.78, 95% confidence interval (CI) 0.62-0.97, P = 0.03] and fewer HF admissions (HR = 0.80, 95% CI 0.67-0.97, P = 0.02), no such effect was seen in HFpEF (mortality: HR = 1.22, 95% CI 0.76-1.96, P = 0.41; HF admissions HR = 1.01, 95% CI 0.67-1.53, P = 0.97; interactions P < 0.02). Age (74 ± 11 years) interacted with treatment strategy allocation independently of EF regarding mortality (P = 0.02), but not HF admission (P = 0.54). The interaction of age and mortality was explained by the interaction of treatment strategy allocation with co-morbidities. In HFpEF, renal failure provided strongest interaction (P < 0.01; increased risk of (NT-pro)BNP-guided therapy if renal failure present), whereas in HFrEF patients, the presence of at least two of the following co-morbidities provided strongest interaction (P < 0.01; (NT-pro)BNP-guided therapy beneficial only if none or one of chronic obstructive pulmonary disease, diabetes, cardiovascular insult, or peripheral vascular disease present). (NT-pro)BNP-guided therapy was harmful in HFpEF patients without hypertension (P = 0.02).CONCLUSION: The benefits of therapy guided by (NT-pro)BNP were present in HFrEF only. Co-morbidities seem to influence the response to (NT-pro)BNP-guided therapy and may explain the lower efficacy of this approach in elderly patients.
  •  
3.
  • Haas, Jan, et al. (författare)
  • Atlas of the clinical genetics of human dilated cardiomyopathy
  • 2015
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 36:18, s. 1123-U43
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: We were able to show that targeted Next-Generation Sequencing is well suited to be applied in clinical routine diagnostics, substantiating the ongoing paradigm shift from low- to high-throughput genomics in medicine. By means of our atlas of the genetics of human DCM, we aspire to soon be able to apply our findings to the individual patient with cardiomyopathy in daily clinical practice. Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort. Methods and results: In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding protein-C 3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that >38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes. Conclusion: This is to our knowledge, the first study that comprehensively investigated the genetics of DCM in a large-scale cohort and across a broad gene panel of the known DCM genes. Our results underline the high analytical quality and feasibility of Next-Generation Sequencing in clinical genetic diagnostics and provide a sound database of the genetic causes of DCM.
  •  
4.
  • Jansweijer, Joeri A., et al. (författare)
  • Heritability in genetic heart disease : the role of genetic background
  • 2019
  • Ingår i: Open heart. - : BMJ Publishing Group Ltd. - 2053-3624. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mutations in genes encoding ion channels or sarcomeric proteins are an important cause of hereditary cardiac disease. However, the severity of the resultant disease varies considerably even among those with an identical mutation. Such clinical variation is often thought to be explained largely by differences in genetic background or ‘modifier genes’. We aimed to test the prediction that identical genetic backgrounds result in largely similar clinical expression of a cardiac disease causing mutation, by studying the clinical expression of mutations causing cardiac disease in monozygotic twins.Methods: We compared first available clinical information on 46 monozygotic twin pairs and 59 control pairs that had either a hereditary cardiomyopathy or channelopathy.Results: Despite limited power of this study, we found significant heritability for corrected QT interval (QTc) in long QT syndrome (LQTS). We could not detect significant heritability for structural traits, but found a significant environmental effect on thickness of the interventricular septum in hypertrophic cardiomyopathy.Conclusions: Our study confirms previously found robust heritability for electrical traits like QTc in LQTS, and adds information on low or lacking heritability for structural traits in heritable cardiomyopathies. This may steer the search for genetic modifiers in heritable cardiac disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy