SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pipko Irina) "

Sökning: WFRF:(Pipko Irina)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pipko, Irina, et al. (författare)
  • The spatial and interannual dynamics of the surface water carbonate system and air–sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean
  • 2017
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 13, s. 997-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is undergoing dramatic changes which cover the entire range of natural processes, from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have a profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant processes in the Arctic seas improves the evaluation and projection of carbon cycle dynamics under current conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic seas (the Barents, Kara, Laptev, and East Siberian seas) during 2006, 2007, and 2009 revealed a general trend in the surface water partial pressure of CO2 (pCO2) distribution, which manifested as an increase in pCO2 values eastward. The existence of this trend was defined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoking a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic seas was carried out in the warm season of 2007; this year was characterized by the next-to-lowest historic sea-ice extent in the Arctic Ocean, on satellite record, to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic seas. The large, open, highly productive water area in the northern Barents Sea enhances atmospheric CO2 uptake. In contrast, the uptake of CO2 was strongly weakened in the outer shelf and slope waters of the East Siberian Arctic seas under the 2007 environmental conditions. The surface seawater appears in equilibrium or slightly supersaturated by CO2 relative to atmosphere because of the increasing influence of river runoff and its input of terrestrial organic matter that mineralizes, in combination with the high surface water temperature during sea-ice-free conditions. This investigation shows the importance of processes that vary on small scales, both in time and space, for estimating the air–sea exchange of CO2. It stresses the need for high-resolution coverage of ocean observations as well as time series. Furthermore, time series must include multi-year studies in the dynamic regions of the Arctic Ocean during these times of environmental change.
  •  
2.
  • Pugach, Svetlana P., et al. (författare)
  • Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas : spatial distribution and interannual variability (2003-2011)
  • 2018
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 14:1, s. 87-103
  • Tidskriftsartikel (refereegranskat)abstract
    • The East Siberian Arctic Shelf (ESAS) is the broadest and shallowest continental shelf in the world. It is characterized by both the highest rate of coastal erosion in the world and a large riverine input of terrigenous dissolved organic matter (DOM). DOM plays a significant role in marine aquatic ecosystems. The chromophoric fraction of DOM (CDOM) directly affects the quantity and spectral quality of available light, thereby impacting both primary production and ultraviolet (UV) exposure in aquatic ecosystems. A multiyear study of CDOM absorption, fluorescence, and spectral characteristics was carried out over the vast ESAS in the summer-fall seasons. The paper describes observations accomplished at 286 stations and 1766 in situ high-resolution optical measurements distributed along the nearshore zone. Spatial and interannual CDOM dynamics over the ESAS were investigated, and driving factors were identified. It was shown that the atmospheric circulation regime is the dominant factor controlling CDOM distribution on the ESAS. This paper explores the possibility of using CDOM and its spectral parameters to identify the different biogeochemical regimes in the surveyed area. The analysis of CDOM spectral characteristics showed that the major part of the Laptev and East Siberian seas shelf is influenced by terrigenous DOM carried in riverine discharge. Western and eastern provinces of the ESAS with distinctly different DOM optical properties were also identified; a transition between the two provinces at around 165-170 degrees E, also consistent with hydrological and hydrochemical data, is shown. In the western ESAS, a region of substantial river impact, the content of aromatic carbon within DOM remains almost constant. In the eastern ESAS, a gradual decrease in aromaticity percentage was observed, indicating contribution of Pacific-origin waters, where allochthonous DOM with predominantly aliphatic character and much smaller absorption capacity predominates. In addition, we found a stable tendency towards reduced concentrations of CDOM and dissolved lignin and an increase in spectral slope and slope ratio values eastward from the Lena River delta; the Lena is the main supplier of DOM to the eastern Arctic shelf. The strong positive correlation (r = 0.97) between dissolved organic carbon (DOC) and CDOM values in the surface shelf waters influenced by terrigenous discharge indicates that it is feasible to estimate DOC content from CDOM fluorescence assessed in situ using a WETStar fluorometer. This approach is reliable over the salinity range of 3 to 24.5. The fact that there is little difference between predicted and observed parameters indicates that the approach is justified. The direct estimation of DOM optical characteristics in the surface ESAS waters provided by this multiyear study will also be useful for validating and calibrating remote sensing data.
  •  
3.
  • Dudarev, Oleg, et al. (författare)
  • East Siberian Sea : Interannual heterogeneity of the suspended particulate matter and its biogeochemical signature
  • 2022
  • Ingår i: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 208
  • Forskningsöversikt (refereegranskat)abstract
    • The East Siberian Sea (ESS) is the largest, shallowest and most icebound Arctic marginal sea. It receives substantial input of terrigenous material and climate-vulnerable old organic carbon from both coastal erosion and rivers draining the extensive permafrost-covered watersheds. This study focuses on the interannual variability and spatial distribution of suspended particulate matter (SPM) in the surface and bottom waters of the ESS during the ice-free period in 2000, 2003, 2004, 2005 and 2008. We report on the composition and variability of particulate organic carbon (POC), total nitrogen (TN), POC/TN ratios, carbon and nitrogen isotopes (δ13C, δ15N) and provide estimates of the contribution of terrestrial organic carbon (terrOC) based on the δ13C isotopic values.The results show that interannual SPM distribution and elemental-isotopic characteristics of POC differ significantly between the western biogeochemical province (WBP; West of 165oE) and the eastern biogeochemical province (EBP; East of 165oE) of the ESS. The SPM mean concentration in the WBP is almost an order of magnitude higher than in the EBP. From west-to-east of the ESS, SPM tends to become more depleted in δ15N, while the δ13C becomes isotopically heavier. This trend can be explained by a shift in organic matter sources from terrigenous origin (erosion of the coastal ice complex and riverine POC) to becoming dominantly from marine plankton.The maximum contribution of terrOC to POC reached 99% in parts of the WBP, but accounts for as low as 1% in parts of the EBP. At the same time, the type of atmospheric circulation and its associated regime of both water circulation and ice transport control a displacement of the semi-stable biogeochemical border between WBP and EBP to the east or to the west if compared to its long-term average position near 165oE. Our multi-year investigation provides a robust observational basis for better understanding of the transport and fate of terrigenous material upon entering the ESS shelf waters. Our results also provide deeper insights into the interaction in the land-shelf sea system of the largest shelf sea system of the World Ocean, the East Siberian Arctic Shelf system.
  •  
4.
  • Semiletov, Igor, et al. (författare)
  • Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon
  • 2016
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 9, s. 361-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean acidification affects marine ecosystems and carbon cycling, and is considered a direct effect of anthropogenic carbon dioxide uptake from the atmosphere. Accumulation of atmospheric CO2 in ocean surface waters is predicted to make the ocean twice as acidic by the end of this century. The Arctic Ocean is particularly sensitive to ocean acidification because more CO2 can dissolve in cold water. Here we present observations of the chemical and physical characteristics of East Siberian Arctic Shelf waters from 1999, 2000–2005, 2008 and 2011, and find extreme aragonite undersaturation that reflects acidity levels in excess of those projected in this region for 2100. Dissolved inorganic carbon isotopic data and Markov chain Monte Carlo simulations of water sources using salinity and delO-18 data suggest that the persistent acidification is driven by the degradation of terrestrial organic matter and discharge of Arctic river water with elevated CO2 concentrations, rather than by uptake of atmospheric CO2. We suggest that East Siberian Arctic Shelf waters may become more acidic if thawing permafrost leads to enhanced terrestrial organic carbon inputs and if freshwater additions continue to increase, which may affect their efficiency as a source of CO2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy