SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pircs Karolina) "

Sökning: WFRF:(Pircs Karolina)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brattås, Per Ludvik, et al. (författare)
  • Impact of differential and time-dependent autophagy activation on therapeutic efficacy in a model of Huntington disease
  • 2021
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 17:6, s. 1316-1329
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of macroautophagy/autophagy, a key mechanism involved in the degradation and removal of aggregated proteins, can successfully reverse Huntington disease phenotypes in various model systems. How neuronal autophagy impairments need to be considered in Huntington disease progression to achieve a therapeutic effect is currently not known. In this study, we used a mouse model of HTT (huntingtin) protein aggregation to investigate how different methods and timing of autophagy activation influence the efficacy of autophagy-activating treatment in vivo. We found that overexpression of human TFEB, a master regulator of autophagy, did not decrease mutant HTT aggregation. On the other hand, Becn1 overexpression, an autophagic regulator that plays a key role in autophagosome formation, partially cleared mutant HTT aggregates and restored neuronal pathology, but only when administered early in the disease progression. When Becn1 was administered at a later stage, when prominent mutant HTT accumulation and autophagy impairments have occurred, Becn1 overexpression did not rescue the mutant HTT-associated phenotypes. Together, these results demonstrate that the targets used to activate autophagy, as well as the timing of autophagy activation, are crucial for achieving efficient therapeutic effects.
  •  
2.
  • Danics, Lea, et al. (författare)
  • Fountain of youth—Targeting autophagy in aging
  • 2023
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • As our society ages inexorably, geroscience and research focusing on healthy aging is becoming increasingly urgent. Macroautophagy (referred to as autophagy), a highly conserved process of cellular clearance and rejuvenation has attracted much attention due to its universal role in organismal life and death. Growing evidence points to autophagy process as being one of the key players in the determination of lifespan and health. Autophagy inducing interventions show significant improvement in organismal lifespan demonstrated in several experimental models. In line with this, preclinical models of age-related neurodegenerative diseases demonstrate pathology modulating effect of autophagy induction, implicating its potential to treat such disorders. In humans this specific process seems to be more complex. Recent clinical trials of drugs targeting autophagy point out some beneficial effects for clinical use, although with limited effectiveness, while others fail to show any significant improvement. We propose that using more human-relevant preclinical models for testing drug efficacy would significantly improve clinical trial outcomes. Lastly, the review discusses the available cellular reprogramming techniques used to model neuronal autophagy and neurodegeneration while exploring the existing evidence of autophagy’s role in aging and pathogenesis in human-derived in vitro models such as embryonic stem cells (ESCs), induced pluripotent stem cell derived neurons (iPSC-neurons) or induced neurons (iNs).
  •  
3.
  • Davegårdh, Cajsa, et al. (författare)
  • VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39(+/-) mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D. Insulin resistance and lower muscle strength in relation to mass are hallmarks of type 2 diabetes. Here, the authors report alterations in muscle stem cells from individuals with type 2 diabetes that may contribute to these phenotypes through VPS39 mediated effects on autophagy and epigenetics.
  •  
4.
  • Drouin-Ouellet, Janelle, et al. (författare)
  • Age-related pathological impairments in directly reprogrammed dopaminergic neurons derived from patients with idiopathic Parkinson's disease
  • 2022
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; 17:10, s. 2203-2219
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.
  •  
5.
  • Drouin-Ouellet, Janelle, et al. (författare)
  • Direct neuronal reprogramming for disease modeling studies using patient-derived neurons : What have we learned?
  • 2017
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-4548 .- 1662-453X. ; 11:SEP
  • Forskningsöversikt (refereegranskat)abstract
    • Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows for the possibility of generating patient-derived neurons. A unique feature of these so-called induced neurons (iNs) is the potential to maintain aging and epigenetic signatures of the donor, which is critical given that many diseases of the CNS are age related. Here, we review the published literature on the work that has been undertaken using iNs to model human brain disorders. Furthermore, as disease-modeling studies using this direct neuronal reprogramming approach are becoming more widely adopted, it is important to assess the criteria that are used to characterize the iNs, especially in relation to the extent to which they are mature adult neurons. In particular: i) what constitutes an iN cell, ii) which stages of conversion offer the earliest/optimal time to assess features that are specific to neurons and/or a disorder and iii) whether generating subtype-specific iNs is critical to the disease-related features that iNs express. Finally, we discuss the range of potential biomedical applications that can be explored using patient-specific models of neurological disorders with iNs, and the challenges that will need to be overcome in order to realize these applications.
  •  
6.
  • Drouin-Ouellet, Janelle, et al. (författare)
  • REST suppression mediates neural conversion of adult human fibroblasts via microRNA-dependent and -independent pathways
  • 2017
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 9:8, s. 1117-1131
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct conversion of human fibroblasts into mature and functional neurons, termed induced neurons (iNs), was achieved for the first time 6 years ago. This technology offers a promising shortcut for obtaining patient- and disease-specific neurons for disease modeling, drug screening, and other biomedical applications. However, fibroblasts from adult donors do not reprogram as easily as fetal donors, and no current reprogramming approach is sufficiently efficient to allow the use of this technology using patient-derived material for large-scale applications. Here, we investigate the difference in reprogramming requirements between fetal and adult human fibroblasts and identify REST as a major reprogramming barrier in adult fibroblasts. Via functional experiments where we overexpress and knockdown the REST-controlled neuron-specific microRNAs miR-9 and miR-124, we show that the effect of REST inhibition is only partially mediated via microRNA up-regulation. Transcriptional analysis confirmed that REST knockdown activates an overlapping subset of neuronal genes as microRNA overexpression and also a distinct set of neuronal genes that are not activated via microRNA overexpression. Based on this, we developed an optimized one-step method to efficiently reprogram dermal fibroblasts from elderly individuals using a single-vector system and demonstrate that it is possible to obtain iNs of high yield and purity from aged individuals with a range of familial and sporadic neurodegenerative disorders including Parkinson's, Huntington's, as well as Alzheimer's disease.
  •  
7.
  • Johansson, Pia A, et al. (författare)
  • A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development
  • 2022
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909 .- 1875-9777. ; 29:1, s. 8-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The human forebrain has expanded in size and complexity compared to chimpanzees despite limited changes in protein-coding genes, suggesting that gene expression regulation is an important driver of brain evolution. Here, we identify a KRAB-ZFP transcription factor, ZNF558, that is expressed in human but not chimpanzee forebrain neural progenitor cells. ZNF558 evolved as a suppressor of LINE-1 transposons but has been co-opted to regulate a single target, the mitophagy gene SPATA18. ZNF558 plays a role in mitochondrial homeostasis, and loss-of-function experiments in cerebral organoids suggests that ZNF558 influences developmental timing during early human brain development. Expression of ZNF558 is controlled by the size of a variable number tandem repeat that is longer in chimpanzees compared to humans, and variable in the human population. Thus, this work provides mechanistic insight into how a cis-acting structural variation establishes a regulatory network that affects human brain evolution.
  •  
8.
  • Jönsson, Marie E, et al. (författare)
  • Activation of endogenous retroviruses during brain development causes an inflammatory response
  • 2021
  • Ingår i: EMBO Journal. - : EMBO Press. - 0261-4189 .- 1460-2075. ; 40:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Endogenous retroviruses (ERVs) make up a large fraction of mammalian genomes and are thought to contribute to human disease, including brain disorders. In the brain, aberrant activation of ERVs is a potential trigger for an inflammatory response, but mechanistic insight into this phenomenon remains lacking. Using CRISPR/Cas9-based gene disruption of the epigenetic co-repressor protein Trim28, we found a dynamic H3K9me3-dependent regulation of ERVs in proliferating neural progenitor cells (NPCs), but not in adult neurons. In vivo deletion of Trim28 in cortical NPCs during mouse brain development resulted in viable offspring expressing high levels of ERVs in excitatory neurons in the adult brain. Neuronal ERV expression was linked to activated microglia and the presence of ERV-derived proteins in aggregate-like structures. This study demonstrates that brain development is a critical period for the silencing of ERVs and provides causal in vivo evidence demonstrating that transcriptional activation of ERV in neurons results in an inflammatory response.
  •  
9.
  • Jönsson, Marie E., et al. (författare)
  • Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation contributes to the maintenance of genomic integrity in somatic cells, in part through the silencing of transposable elements. In this study, we use CRISPR-Cas9 technology to delete DNMT1, the DNA methyltransferase key for DNA methylation maintenance, in human neural progenitor cells (hNPCs). We observe that inactivation of DNMT1 in hNPCs results in viable, proliferating cells despite a global loss of DNA CpG-methylation. DNA demethylation leads to specific transcriptional activation and chromatin remodeling of evolutionarily young, hominoid-specific LINE-1 elements (L1s), while older L1s and other classes of transposable elements remain silent. The activated L1s act as alternative promoters for many protein-coding genes involved in neuronal functions, revealing a hominoid-specific L1-based transcriptional network controlled by DNA methylation that influences neuronal protein-coding genes. Our results provide mechanistic insight into the role of DNA methylation in silencing transposable elements in somatic human cells, as well as further implicating L1s in human brain development and disease.
  •  
10.
  • Kutsche, Lisa K., et al. (författare)
  • Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis
  • 2018
  • Ingår i: Cell systems. - : Elsevier BV. - 2405-4712. ; 7:4, s. 438-452
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 has been assigned as a key player of neuronal differentiation via its complex but little understood regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human induced pluripotent stem cells. Upon neuronal induction, miR-124-deleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. Using RNA-induced-silencing-complex precipitation, we identified 98 high-confidence miR-124 targets, of which some directly led to decreased viability. By performing advanced transcription-factor-network analysis, we identified indirect miR-124 effects on apoptosis, neuronal subtype differentiation, and the regulation of previously uncharacterized zinc finger transcription factors. Our data emphasize the need for combined experimental- and system-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
Typ av publikation
tidskriftsartikel (18)
forskningsöversikt (3)
konferensbidrag (1)
Typ av innehåll
refereegranskat (22)
Författare/redaktör
Jakobsson, Johan (15)
Parmar, Malin (7)
Barker, Roger A. (7)
Drouin-Ouellet, Jane ... (5)
Shrigley, Shelby (2)
Perfilyev, Alexander (2)
visa fler...
Volkov, Petr (2)
Ling, Charlotte (2)
Storm, Petter (2)
Larsson, Jonas (2)
Westergren-Thorsson, ... (1)
Pedersen, M. (1)
Minthon, Lennart (1)
Nilsson, Emma (1)
Nilsson, Fredrik (1)
Stenlund, Hans (1)
Hansson, Ola (1)
Fex, Malin (1)
Holmberg, Johan (1)
Hamilton, Alexander (1)
Mulder, Hindrik (1)
Månsson, Robert (1)
Rönn, Tina (1)
Schulze, Matthias B. (1)
Vaag, Allan (1)
Magnusson, Cecilia (1)
Marko-Varga, György (1)
Lidemalm, Louise (1)
Åkerblom, Malin (1)
Ottosson, Daniella (1)
Eliasson, Lena (1)
Eichelmann, Fabian (1)
Graff, Caroline (1)
Augustsson, Per (1)
Stadler, Peter F. (1)
Johansson, Jenny (1)
Bacos, Karl (1)
Andersson Sjöland, A ... (1)
Bengzon, Johan (1)
Rezeli, Melinda (1)
Petersén, Åsa (1)
Falk, Anna (1)
Ruhrmann, Sabrina (1)
Karagiannopoulos, Al ... (1)
Ofori, Jones K (1)
Stener-Victorin, E (1)
Wendt, Anna (1)
Jern, Patric (1)
Häggblad, Maria (1)
Wu, Yanling, 1985 (1)
visa färre...
Lärosäte
Lunds universitet (22)
Karolinska Institutet (7)
Göteborgs universitet (1)
Umeå universitet (1)
Uppsala universitet (1)
Högskolan i Skövde (1)
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy