SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pirolli Davide) "

Sökning: WFRF:(Pirolli Davide)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersen, Oivind, et al. (författare)
  • Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua) - Conserved synteny between fish monolobal and tetrapod bilobal transferrin loci.
  • 2011
  • Ingår i: BMC genetics. - : Springer Science and Business Media LLC. - 1471-2156. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. RESULTS: The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp) expressed in the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, which might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. CONCLUSIONS: The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive selection and local adaptation in trans-Atlantic cod populations.
  •  
2.
  • Andersen, Øivind, et al. (författare)
  • The conserved Phe GH5 of importance for hemoglobin intersubunit contact is mutated in gadoid fish
  • 2014
  • Ingår i: BMC Evolutionary Biology. - 1471-2148. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Background Functionality of the tetrameric hemoglobin molecule seems to be determined by a few amino acids located in key positions. Oxygen binding encompasses structural changes at the interfaces between the α1β2 and α2β1 dimers, but also subunit interactions are important for the oxygen binding affinity and stability. The latter packing contacts include the conserved Arg B12 interacting with Phe GH5, which is replaced by Leu and Tyr in the α A and α D chains, respectively, of birds and reptiles. Results Searching all known hemoglobins from a variety of gnathostome species (jawed vertebrates) revealed the almost invariant Arg B12 coded by the AGG triplet positioned at an exon-intron boundary. Rare substitutions of Arg B12 in the gnathostome β globins were found in pig, tree shrew and scaled reptiles. Phe GH5 is also highly conserved in the β globins, except for the Leu replacement in the β1 globin of five marine gadoid species, gilthead seabream and the Comoran coelacanth, while Cys and Ile were found in burbot and yellow croaker, respectively. Atlantic cod β1 globin showed a Leu/Met polymorphism at position GH5 dominated by the Met variant in northwest-Atlantic populations that was rarely found in northeast-Atlantic cod. Site-specific analyses identified six consensus codons under positive selection, including 122β(GH5), indicating that the amino acid changes identified at this position may offer an adaptive advantage. In fact, computational mutation analysis showed that the replacement of Phe GH5 with Leu or Cys decreased the number of van der Waals contacts essentially in the deoxy form that probably causes a slight increase in the oxygen binding affinity. Conclusions The almost invariant Arg B12 and the AGG codon seem to be important for the packing contacts and pre-mRNA processing, respectively, but the rare mutations identified might be beneficial. The Leu122β1(GH5)Met and Met55β1(D6)Val polymorphisms in Atlantic cod hemoglobin modify the intradimer contacts B12-GH5 and H2-D6, while amino acid replacements at these positions in avian hemoglobin seem to be evolutionary adaptive in air-breathing vertebrates. The results support the theory that adaptive changes in hemoglobin functions are caused by a few substitutions at key positions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy