SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Piskunov Nikolai E.) "

Sökning: WFRF:(Piskunov Nikolai E.)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Marconi, Alessandro, et al. (författare)
  • ELT-HIRES, the high resolution spectrograph for the ELT : Phase A study and path to construction
  • 2020
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy VIII. - : SPIE - International Society for Optical Engineering. - 9781510636828 - 9781510636811
  • Konferensbidrag (refereegranskat)abstract
    • HIRES is the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 µm (goal 0.35-2.4 µm) at a spectral resolution of 100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing- and diffraction-limited modes. Its modularity will ensure that HIRES can be placed entirely on the Nasmyth platform, if enough mass and volume is available, or part on the Nasmyth and part in the Coud`e room. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
  •  
3.
  • Dubernet, M. L., et al. (författare)
  • The virtual atomic and molecular data centre (VAMDC) consortium
  • 2016
  • Ingår i: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 49:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.
  •  
4.
  • Boyarchuk, A. A., et al. (författare)
  • Scientific problems addressed by the Spektr-UV space project (world space Observatory-Ultraviolet)
  • 2016
  • Ingår i: Astronomy reports (Print). - 1063-7729 .- 1562-6881. ; 60:1, s. 1-42
  • Tidskriftsartikel (refereegranskat)abstract
    • The article presents a review of scientific problems and methods of ultraviolet astronomy, focusing on perspective scientific problems (directions) whose solution requires UV space observatories. These include reionization and the history of star formation in the Universe, searches for dark baryonic matter, physical and chemical processes in the interstellar medium and protoplanetary disks, the physics of accretion and outflows in astrophysical objects, from Active Galactic Nuclei to close binary stars, stellar activity (for both low-mass and high-mass stars), and processes occurring in the atmospheres of both planets in the solar system and exoplanets. Technological progress in UV astronomy achieved in recent years is also considered. The well advanced, international, Russian-led Spektr-UV (World Space Observatory-Ultraviolet) project is described in more detail. This project is directed at creating a major space observatory operational in the ultraviolet (115-310 nm). This observatory will provide an effective, and possibly the only, powerful means of observing in this spectral range over the next ten years, and will be an powerful tool for resolving many topical scientific problems.
  •  
5.
  • Follert, R., et al. (författare)
  • CRIRES plus : a cross-dispersed high-resolution infrared spectrograph for the ESO VLT
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • High-resolution infrared spectroscopy plays an important role in astrophysics from the search for exoplanets to cosmology. Yet, many existing infrared spectrographs are limited by a rather small simultaneous wavelength coverage. The AO assisted CRIRES instrument, installed at the ESO VLT on Paranal, is one of the few IR (0.92-5.2 mu m) high-resolution spectrographs in operation since 2006. However it has a limitation that hampers its efficient use: the wavelength range covered in a single exposure is limited to similar to 15 nanometers. The CRIRES Upgrade project (CRIRES+) will transform CRIRES into a cross-dispersed spectrograph and will also add new capabilities. By introducing cross-dispersion elements the simultaneously covered wavelength range will be increased by at least a factor of 10 with respect to the present configuration, while the operational wavelength range will be preserved. For advanced wavelength calibration, new custom made absorption gas cells and etalons will be added. A spectro-polarimetric unit will allow one for the first time to record circularly polarized spectra at the highest spectral resolution. This will be all supported by a new data reduction software which will allow the community to take full advantage of the new capabilities of CRIRES+.
  •  
6.
  • Lueftinger, T., et al. (författare)
  • Surface structure of the CoRoT CP2 target star HD50773
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 509:1, s. A43-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We compare surface maps of the chemically peculiar star HD50773 produced with a Bayesian technique and based on high quality CoRoT photometry with those derived from rotation phase resolved spectropolarimetry. The goal is to investigate the correlation of surface brightness with surface chemical abundance distribution and the stellar magnetic surface field. Methods. The rotational period of the star was determined from a nearly 60 days long continuous light curve obtained during the initial run of CoRoT. Using a Bayesian approach to star-spot modelling, which in this work is applied for the first time for the photometric mapping of a CP star, we derived longitudes, latitudes and radii of four different spot areas. Additional parameters like stellar inclination and the spot's intensities were also determined. The CoRoT observations triggered an extensive ground-based spectroscopic and spectropolarimetric observing campaign and enabled us to obtain 19 different high resolution spectra in Stokes parameters I and V with NARVAL, ESPaDOnS, and SemelPol spectropolarimeters. Doppler and Magnetic Doppler imaging techniques allowed us to derive the magnetic field geometry of the star and the surface abundance distributions of Mg, Si, Ca, Ti, Cr, Fe, Ni, Y, and Cu. Results. We find a dominant dipolar structure of the surface magnetic field. The CoRoT light curve variations and abundances of most elements mapped are correlated with the aforementioned geometry: Cr, Fe, and Si are enhanced around the magnetic poles and coincide with the bright regions on the surface of HD50773 as predicted by our light curve synthesis and confirmed by photometric imaging.
  •  
7.
  • Marconi, A., et al. (författare)
  • EELT-HIRES the high-resolution spectrograph for the E-ELT
  • 2016
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VI. - : SPIE. - 9781510601963
  • Konferensbidrag (refereegranskat)abstract
    • The first generation of E-ELT instruments will include an optical infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet formation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Denmark, France, Germany, Italy, Poland, Portugal, Spain, Sweden, Switzerland and United Kingdom. In this paper we describe the science goals and the preliminary technical concept for EELT-HIRES which will be developed during the phase A, as well as its planned development and consortium organisation during the study.
  •  
8.
  • Marconi, A., et al. (författare)
  • ELT-HIRES, the high resolution spectrograph for the ELT : results from the Phase A study
  • 2018
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VII. - : SPIE-INT SOC OPTICAL ENGINEERING. - 9781510619586
  • Konferensbidrag (refereegranskat)abstract
    • We present the results from the phase A study of ELT-HIRES, an optical-infrared High Resolution Spectrograph for ELT, which has just been completed by a consortium of 30 institutes from 12 countries forming a team of about 200 scientists and engineers. The top science cases of ELT-HIRES will be the detection of life signatures from exoplanet atmospheres, tests on the stability of Nature's fundamental couplings, the direct detection of the cosmic acceleration. However, the science requirements of these science cases enable many other groundbreaking science cases. The baseline design, which allows to fulfil the top science cases, consists in a modular fiber fed cross-dispersed echelle spectrograph with two ultra-stable spectral arms providing a simultaneous spectral range of 0.4-1.8 pm at a spectral resolution of 100, 000. The fiber-feeding allows ELT-HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU.
  •  
9.
  • Oliva, E., et al. (författare)
  • Concept and optical design of the cross-disperser module for CRIRES
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES, the ESO high resolution infrared spectrometer, is a unique instrument which allows astronomers to access a parameter space which up to now was largely uncharted. In its current setup, it consists of a single-order spectrograph providing long-slit, single-order spectroscopy with resolving power up to R=100,000 over a quite narrow spectral range. This has resulted in sub-optimal efficiency and use of telescope time for all the scientific programs requiring broad spectral coverage of compact objects (e.g. chemical abundances of stars and intergalactic medium, search and characterization of extra-solar planets). To overcome these limitations, a consortium was set-up for upgrading CRIRES to a cross-dispersed spectrometer, called CRIRES+. This paper presents the updated optical design of the cross-dispersion module for CRIRES+. This new module can be mounted in place of the current pre-disperser unit. The new system yields a factor of >10 increase in simultaneous spectral coverage and maintains a quite long slit (10"), ideal for observations of extended sources and for precise sky-background subtraction.
  •  
10.
  • Seemann, U., et al. (författare)
  • Wavelength calibration from 1-5 mu m for the CRIRES plus high-resolution spectrograph at the VLT
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES at the VLT is one of the few adaptive optics enabled instruments that offer a resolving power of 10 5 from 1 - 5 mu m. An instrument upgrade (CRIRES+) is proposed to implement cross-dispersion capabilities, spectro-polarimetry modes, a new detector mosaic, and a new gas absorption cell. CRIRES+ will boost the simultaneous wavelength coverage of the current instrument (similar to lambda/70 in a single-order) by a factor of greater than or similar to 10 in the cross-dispersed configuration, while still retaining a 10 arcsec slit suitable for long-slit spectroscopy. CRIRES+ dramatically enhances the instrument's observing efficiency, and opens new scientific opportunities. These include high-precision radial-velocity studies on the 3m/s level to characterize extra-solar planets and their athmospheres, which demand for specialized, highly accurate wavelength calibration techniques. In this paper, we present a newly developed absorption gas-cell to enable high-precision wavelength calibration for CRIRES+. We also discuss the strategies and developments to cover the full operational spectral range (1-5 mu m), employing hollow-cathode emission lamps, Fabry-Perot etalons, and absorption gas-cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy