SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Piskunov Nikolai Professor) "

Sökning: WFRF:(Piskunov Nikolai Professor)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Holmberg, Mika, 1982- (författare)
  • A study of the structure and dynamics of Saturn's inner plasma disk
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents a study of the inner plasma disk of Saturn. The results are derived from measurements by the instruments on board the Cassini spacecraft, mainly the Cassini Langmuir probe (LP), which has been in orbit around Saturn since 2004. One of the great discoveries of the Cassini spacecraft is that the Saturnian moon Enceladus, located at 3.95 Saturn radii (1 RS = 60,268 km), constantly expels water vapor and condensed water from ridges and troughs located in its south polar region. Impact ionization and photoionization of the water molecules, and subsequent transport, creates a plasma disk around the orbit of Enceladus. The plasma disk ion components are mainly hydrogen ions H+ and water group ions W+ (O+, OH+, H2O+, and H3O+). The Cassini LP is used to measure the properties of the plasma. A new method to derive ion density and ion velocity from Langmuir probe measurements has been developed. The estimated LP statistics are used to derive the extension of the plasma disk, which show plasma densities above ~20 cm-3 in between 2.7 and 8.8 RS. The densities also show a very variable plasma disk, varying with one order of magnitude at the inner part of the disk. We show that the density variation could partly be explained by a dayside/nightside asymmetry in both equatorial ion densities and azimuthal ion velocities. The asymmetry is suggested to be due to the particle orbits being shifted towards the Sun that in turn would cause the whole plasma disk to be shifted. We also investigate the ion loss processes of the inner plasma disk and conclude that loss by transport dominates loss by recombination in the entire region. However, loss by recombination is still important in the region closest to Enceladus (~±0.5 RS) where it differs with only a factor of two from ion transport loss. 
  •  
2.
  • Lavail, Alexis (författare)
  • Magnetic fields of cool stars from near-infrared spectropolarimetry
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic fields rule many physical processes in and around stars throughout their lifetime. All cool stars possess a magnetic field, likely generated by dynamo processes. In order to properly understand the evolution of cool stars, we need to understand their magnetism. Stellar magnetic fields can be directly observed through the imprint of the Zeeman effect in intensity and polarized spectra. In intensity spectra (Stokes I), spectral lines are broadened or split into several components by the magnetic field. Modelling this effect in high-resolution spectra allows us to determine the average unsigned magnetic field strength over the stellar surface. The magnetic field also induces circular (Stokes V) and linear polarization (Stokes QU) in spectral lines, according to its orientation. These polarization signals can be used to map the large-scale magnetic field at the surface of the star using tomographic techniques such as Zeeman Doppler imaging (ZDI). In this thesis, we investigated pre-main-sequence T Tauri stars and the active M dwarf AD Leo with the goal to understand their magnetic fields. We modelled the Zeeman broadening in high-resolution near-infrared spectra of low-mass and intermediate-mass T Tauri stars and derived their mean magnetic field strengths. In intermediate-mass T Tauri stars, we only found fields weaker than 2-3 kG. However, we found that low-mass T Tauri stars can have a wide range of magnetic field strength from relatively weak fields of 1.5 kG to fields as strong as 4.4 kG, and that their field strengths do not correlate with stellar parameters. Our observations of the M dwarf AD Leo led to the first detection of linear polarization in the spectral lines of an M dwarf. We also discovered that its Stokes V profiles, which were constant over many years, had changed in our observations. We mapped its global magnetic field using ZDI and found that it became concentrated into smaller areas on the stellar surface. Finally, we analyzed Stokes IV observations of the spectroscopic binary V1878 Ori. Both components of this system are intermediate-mass T Tauri stars with very similar properties. We determined stellar parameters by studying orbital motion of the components and comparing their disentangled spectra to theoretical models. We then mapped the global magnetic fields of the two stars simultaneously using ZDI. We found that their magnetic fields have radically different geometries and different strengths.
  •  
3.
  • Makaganiuk, Vitalii (författare)
  • Magnetic Fields and Chemical Spots in HgMn Stars
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mercury-manganese (HgMn) stars belong to the class of chemically peculiar (CP) stars. It was recently discovered that some HgMn stars have spots of chemical elements on their surfaces. According to conventional picture of CP stars, magnetic field facilitates the formation and long term stability of chemical spots by controlling stratification of elements in stellar atmosphere. However, previous attempts to find magnetic field in HgMn stars set an upper limit on its strength at the level of about 20-100 Gauss. Observational evidence suggested that even weaker magnetic fields can be responsible for the formation of chemical spots. The main goal of our work was to verify this possibility.The search for weak magnetic fields requires the use of least-squares deconvolution (LSD) technique.  This method combines information from many spectral lines providing a mean line profile with increased signal-to-noise ratio. Up to now there was no extensive comparison of the LSD profile with real spectral lines. We showed that the LSD profile of the intensity spectrum does not behave like a real spectral line as a function of chemical composition. However, for circular polarization, LSD profile resembles the profile of a spectral line with mean atomic parameters.We performed a comprehensive search for magnetic field in 47 HgMn stars and their companions, based on high-quality spectropolarimetric data obtained with the HARPSpol polarimeter at the ESO 3.6-m telescope. With the help of LSD technique, an upper limit on the mean longitudinal magnetic field was brought down to 2-10 G for most stars. We concluded that magnetic field is not responsible for the spot formation in HgMn stars.We obtained full rotational phase coverage for the HgMn stars φ Phe and 66 Eri. This enabled us to investigate line profile variability, reconstruct surface maps of chemical elements, and perform a search for magnetic field with very high sensitivity. For φ Phe we derived surface maps of Y, Sr, Ti, Cr, and obtained an upper limit of 4 G on the field strength. We also found marginal indication of vertical stratification of Y and Ti. No magnetic field was detected in both components of 66 Eri, with an upper limit of 10-24 G. We discovered chemical spots of Y, Sr, Ba, and Ti, in the primary star. We demonstrated a relation between the binary orbit and the morphology of these spots.
  •  
4.
  • Wehrhahn, Ansgar, 1991- (författare)
  • High Resolution Transmission Spectroscopy of Exoplanets
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A large number of exoplanets has been observed in the last three decades, but still for most of them we know comparatively little about the atmospheres of these distant planets. This is of particular interest as there exist types of planets that don't have an analogy in our own solar system, like hot Jupiters or super Earths. Studying these is instrumental in understanding planet and solar system formation. However just as planets are much smaller than their host stars, so is their signal in the observations. We therefore require high-precision measurements and analysis methods to study them. In this thesis I focus on ground-based high-resolution spectroscopy, as this allows us to use the information encoded in individual absorption lines of the spectrum. I developed tools for the entire process from the initial data reduction, over the analysis of the host star, to the final planet atmosphere characterization.The first tool I developed is PyReduce. It performs data reduction on raw observation images of high-resolution spectrographs by correcting for noise and bias in the data. Of special interest is the new extraction algorithm, which properly accounts for the optical distortions in the spectrograph, and thus improves the quality of the recovered spectrum.The second tool is PySME, which determines the fundamental parameters of the host stars, by modelling the stellar atmosphere and comparing it to the observed spectrum. Accurate stellar parameters help us understand the star-planet system, especially regarding the stellar irradiation on the planet which is important for the temperature. Finally I created ChEATS to determine the chemical components of the planet atmosphere using the cross-correlation method. This method combines all observed spectral lines to detect the faint planet signal in the data. We show that these tools provide excellent analyses in the papers presented here. Additionally PyReduce and PySME are in active use by scientists all over the world. Finally we present an analysis of WASP-107 b, in which we detect H2O and CO in the planet atmosphere.
  •  
5.
  • Albert, Damien, et al. (författare)
  • A Decade with VAMDC : Results and Ambitions
  • 2020
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of the VAMDC e-infrastructure. We analyse the past 10 years of VAMDC development and operation, and assess their impact both on the field of atomic and molecular (A&M) physics itself and on heterogeneous data management in international cooperation. The highly sophisticated VAMDC infrastructure and the related databases developed over this long term make them a perfect resource of sustainable data for future applications in many fields of research. However, we also discuss the current limitations that prevent VAMDC from becoming the main publishing platform and the main source of A&M data for user communities, and present possible solutions under investigation by the consortium. Several user application examples are presented, illustrating the benefits of VAMDC in current research applications, which often need the A&M data from more than one database. Finally, we present our vision for the future of VAMDC.
  •  
6.
  • Aronson, Erik, et al. (författare)
  • Model-free inverse method for transit imaging of stellar surfaces : Using transit surveys to map stellar spot coverage
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: We present a model-free method for mapping surface brightness variations.Aims: We aim to develop a method that is not dependent on either stellar atmosphere models or limb-darkening equation. This method is optimized for exoplanet transit surveys such that a large database of stellar spot coverage can be created.Methods: The method uses light curves from several transit events of the same system. These light curves are phase-folded and median-combined to for a high-quality light curve without temporal local brightness variations. Stellar specific intensities are extracted from this light curve using a model-free method. We search individual light curves for departures from the median-combined light curve. Such departures are interpreted as brightness variations on the stellar surface. A map of brightness variations on the stellar surface is produced by finding the brightness distribution that can produce a synthetic light curve that fits observations well. No assumptions about the size, shape, or contrast of brightness variations are made.Results: We successfully reproduce maps of stellar disks from both synthetic data and archive observations from FORS2, the visual and near UV FOcal Reducer and low dispersion Spectrograph for the Very Large Telescope (VLT).
  •  
7.
  • Boldt-Christmas, Linn, et al. (författare)
  • Optimising spectroscopic observations of transiting exoplanets
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. When observing the atmospheres of transiting exoplanets using high-resolution spectroscopy, the aim is to detect well-resolved spectral features with high signal-to-noise ratios (S/Ns), as is possible today with modern spectrographs. However, obtaining such high-quality observations comes with a trade-off: a lower cadence of fewer, longer exposures across the transit collects more photons thanks to reduced overheads, enhancing the S/N of each observation, while a higher cadence of several shorter exposures minimises spectral feature smearing due to the continuously changing radial velocity of the planet.Aims. Considering that maximising S/N and minimising smearing are both beneficial to analysis, there is a need to identify the optimal compromise between the two for a given target. In this work, we aim to establish where this compromise lies for a typical exoplanet transit observation in order to benefit future data collection and subsequent interpretation.Methods. We modelled real transit events based on targets as they would be observed with VLT/CRIRES+ at Paranal Observatory, Chile. Creating four hypothetical scenarios, we simulated each set of transmission spectra across 100 realisations of the same transit event in order to vary the time resolution only. We removed telluric and stellar lines from these data sets using the SYSREM algorithm and analysed them through cross-correlation with model templates, measuring how successfully each time resolution and case detected the planetary signal and exploring how the results vary.Results. We demonstrate that there is a continuous change in the significance of the cross-correlation detection based on the trade-off between high and low time resolutions, and that, averaged over a large number of realisations, the function of this significance has clear maxima. The strength and location of these maxima vary depending on, for example, planet system parameters, instrumentation, and the number of removal iterations. We discuss why observers should therefore take several factors into account using a strategy akin to the 'exposure triangle' employed in traditional photography where a balance must be struck by considering the full context of the observation. Our method is robust and may be employed by observers to estimate the best observational strategies for other targets.
  •  
8.
  • Bristow, Paul, et al. (författare)
  • CRIRES+ : Characterisation and preparation during the pandemic
  • 2022
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Konferensbidrag (refereegranskat)abstract
    • In early 2020 the upgraded(1) CRIRES2 instrument, was installed at the VLT, however the onset of the global pandemic prevented the completion of some aspects of the installation while characterisation and commissioning had to be conducted with a remote connection from Europe. This resulted in a somewhat experimental, ad-hoc, approach to characterisation that required tight co-ordination between Paranal scientists and the instrument team in Europe. Moreover, with the observatory operating at minimal staffing, we had to find workarounds for some unfinished parts of the installation and adapt our characterisation, calibration and operations strategies accordingly. In particular, we discuss the adaptation made to the metrology strategy that illustrates well the pragmatic and ultimately successful approach adopted for getting CRIRES+ ready for operations.
  •  
9.
  • Brucalassi, Anna, et al. (författare)
  • Full System Test and early Preliminary Acceptance Europe results for CRIRES
  • 2018
  • Ingår i: Ground-Based And Airborne Instrumentation For Astronomy VII. - : SPIE. - 9781510619586
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES+ is the new high-resolution NIR echelle spectrograph intended to be operated at the platform B of VLT Unit telescope UT3. It will cover from Y to M bands (0.95-5.3um) with a spectral resolution of R = 50000 or R = 100000. The main scientific goals are the search of super-Earths in the habitable zone of low-mass stars, the characterisation of transiting planets atmosphere and the study of the origin and evolution of stellar magnetic fields. Based on the heritage of the old adaptive optics (AO) assisted VLT instrument CRIRES, the new spectrograph will present improved optical layout, a new detector system and a new calibration unit providing optimal performances in terms of simultaneous wavelength coverage and radial velocity accuracy (a few m/s). The total observing efficiency will be enhanced by a factor of 10 with respect to CRIRES. An innovative spectro-polarimetry mode will be also offered and a new metrology system will ensure very high system stability and repeatability. Fiinally, the CRIRES+ project will also provide the community with a new data reduction software (DRS) package. CRIRES+ is currently at the initial phase of its Preliminary Acceptance in Europe (PAE) and it will be commissioned early in 2019 at VLT. This work outlines the main results obtained during the initial phase of the full system test at ESO HQ Garching.
  •  
10.
  • Cheng, Yuk Shan, et al. (författare)
  • Continuous ultraviolet to blue-green astrocomb
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmological and exoplanetary science using transformative telescopes like the ELT will demand precise calibration of astrophysical spectrographs in the blue-green, where stellar absorption lines are most abundant. Astrocombs-lasers providing a broadband sequence of regularly-spaced optical frequencies on a multi-GHz grid-promise an atomically-traceable calibration scale, but their realization in the blue-green is challenging for current infrared-laser-based technology. Here, we introduce a concept achieving a broad, continuous spectrum by combining second-harmonic generation and sum-frequency-mixing in an MgO:PPLN waveguide to generate 390-520 nm light from a 1 GHz Ti:sapphire frequency comb. Using a Fabry-Perot filter, we extract a 30 GHz sub-comb spanning 392-472 nm, visualizing its thousands of modes on a high-resolution spectrograph. Experimental data and simulations demonstrate how the approach can bridge the spectral gap present in second-harmonic-only conversion. Requiring only ≈100 pJ pulses, our concept establishes a new route to broadband UV-visible generation at GHz repetition rates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy