SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Place N) "

Sökning: WFRF:(Place N)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Bradnam, K. R., et al. (författare)
  • Assemblathon 2 : Evaluating de novo methods of genome assembly in three vertebrate species
  • 2013
  • Ingår i: GigaScience. - : BioMed Central (BMC). - 2047-217X. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. Results: In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. Conclusions: Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.
  •  
3.
  • Wyckelsma, VL, et al. (författare)
  • Vitamin C and E Treatment Blunts Sprint Interval Training-Induced Changes in Inflammatory Mediator-, Calcium-, and Mitochondria-Related Signaling in Recreationally Active Elderly Humans
  • 2020
  • Ingår i: Antioxidants (Basel, Switzerland). - : MDPI AG. - 2076-3921. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Sprint interval training (SIT) has emerged as a time-efficient training regimen for young individuals. Here, we studied whether SIT is effective also in elderly individuals and whether the training response was affected by treatment with the antioxidants vitamin C and E. Recreationally active elderly (mean age 65) men received either vitamin C (1 g/day) and vitamin E (235 mg/day) or placebo. Training consisted of nine SIT sessions (three sessions/week for three weeks of 4-6 repetitions of 30-s all-out cycling sprints) interposed by 4 min rest. Vastus lateralis muscle biopsies were taken before, 1 h after, and 24 h after the first and last SIT sessions. At the end of the three weeks of training, SIT-induced changes in relative mRNA expression of reactive oxygen/nitrogen species (ROS)- and mitochondria-related proteins, inflammatory mediators, and the sarcoplasmic reticulum Ca2+ channel, the ryanodine receptor 1 (RyR1), were blunted in the vitamin treated group. Western blots frequently showed a major (>50%) decrease in the full-length expression of RyR1 24 h after SIT sessions; in the trained state, vitamin treatment seemed to provide protection against this severe RyR1 modification. Power at exhaustion during an incremental cycling test was increased by ~5% at the end of the training period, whereas maximal oxygen uptake remained unchanged; vitamin treatment did not affect these measures. In conclusion, treatment with the antioxidants vitamin C and E blunts SIT-induced cellular signaling in skeletal muscle of elderly individuals, while the present training regimen was too short or too intense for the changes in signaling to be translated into a clear-cut change in physical performance.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Neyroud, D, et al. (författare)
  • Toxic doses of caffeine are needed to increase skeletal muscle contractility
  • 2019
  • Ingår i: American journal of physiology. Cell physiology. - : American Physiological Society. - 1522-1563 .- 0363-6143. ; 316:2, s. C246-C251
  • Tidskriftsartikel (refereegranskat)abstract
    • Discrepant results have been reported regarding an intramuscular mechanism underlying the ergogenic effect of caffeine on neuromuscular function in humans. Here, we reevaluated the effect of caffeine on muscular force production in humans and combined this with measurements of the caffeine dose-response relationship on force and cytosolic free [Ca2+] ([Ca2+]i) in isolated mouse muscle fibers. Twenty-one healthy and physically active men (29 ± 9 yr, 178 ± 6 cm, 73 ± 10 kg, mean ± SD) took part in the present study. Nine participants were involved in two experimental sessions during which supramaximal single and paired electrical stimulations (at 10 and 100 Hz) were applied to the femoral nerve to record evoked forces. Evoked forces were recorded before and 1 h after ingestion of 1) 6 mg caffeine/kg body mass or 2) placebo. Caffeine plasma concentration was measured in 12 participants. In addition, submaximal tetanic force and [Ca2+]iwere measured in single mouse flexor digitorum brevis (FDB) muscle fibers exposed to 100 nM up to 5 mM caffeine. Six milligrams of caffeine per kilogram body mass (plasma concentration ~40 µM) did not increase electrically evoked forces in humans. In superfused FDB single fibers, millimolar caffeine concentrations (i.e., 15- to 35-fold above usual concentrations observed in humans) were required to increase tetanic force and [Ca2+]i. Our results suggest that toxic doses of caffeine are required to increase muscle contractility, questioning the purported intramuscular ergogenic effect of caffeine in humans.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy