SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Placke Tobias Professor) "

Sökning: WFRF:(Placke Tobias Professor)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edström, Kristina, Professor, 1958- (författare)
  • Battery 2030+ Roadmap
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change is the biggest challenge facing the world today. Europe is committed to achieving a climate-neutral society by 2050, as stated in the European Green Deal.1 The transition towards a climate-neutral Europe requires fundamental changes in the way we generate and use energy. If batteries can be made simultaneously more sustainable, safe, ultrahigh performing, and affordable, they will be true enablers, “accelerating the shift towards sustainable and smart mobility; supplying clean, affordable and secure energy; and mobilizing industry for a clean and circular economy” - all of which are important elements of the UN Sustainable Development Goals.In other words, batteries are a key technology for battling carbon dioxide emissions from the transport, power, and industry sectors. However, to reach our sustainability goals, batteries must exhibit ultra-high performance beyond their capabilities today. Ultra-high performance includes energy and power performance approaching theoretical limits, outstanding lifetime and reliability, and enhanced safety and environmental sustainability. Furthermore, to be commercially successful, these batteries must support scalability that enables cost-effective large-scale production.BATTERY 2030+, is the large-scale, long-term European research initiative with the vision of inventing the sustainable batteries of the future, to enable Europe to reach the goals envisaged in the European Green Deal. BATTERY 2030+ is at the heart of a green and connected society.BATTERY 2030+ will contribute to create a vibrant battery research and development (R&D) community in Europe, focusing on long-term research that will continuously feed new knowledge and technologies throughout the value chain, resulting in new products and innovations. In addition, the initiative will attract talent from across Europe and contribute to ensure access to competences needed for ongoing societal transformation.The BATTERY 2030+ aims are:• to invent ultra-high performance batteries that are safe, affordable, and sustainable, witha long lifetime.• to provide new tools and breakthrough technologies to the European battery industrythroughout the value chain.• to enable long-term European leadership in both existing markets (e.g., transport andstationary storage) and future emerging sectors (e.g., robotics, aerospace, medical devices, and Internet of things)With this roadmap, BATTERY 2030+ advocates research directions based on a chemistry-neutral approach that will allow Europe to reach or even surpass its ambitious battery performance targets set in the European Strategic Energy Technology Plan (SET-Plan)3 and foster innovation throughout the battery value chain.
  •  
2.
  • Kotronia, Antonia (författare)
  • Probing Critical Interfaces in Dual-Ion Batteries : The Road Towards Performant Graphite Cathodes
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Transitioning into a zero-emission society will require massive efforts with respect to the harnessing and storage of renewable energy resources. The development of large-scale, electrochemical energy storage systems based on abundant and environmentally benign compounds is seen upon as a key factor for guaranteeing a successful outcome. On these grounds, research into post lithium-ion battery technologies has become increasingly important. Among emerging concepts is that of dual-ion batteries (DIBs); the operational mechanism of which uses both the cation and anion in the electrolyte. DIBs offer some unique advantages compared to other cell chemistries, owing to the unconventional materials combinations they enable. Graphite versus graphite cells constitute a cell chemistry which results in high average voltage (> 4.5 V), decent specific capacity (~100 mAh g-1) and which eliminates transition metals from the cathode. Despite considerable merits, graphite versus graphite dual-ion cells have proven difficult to realize, mainly due to the instability of the cathode electrolyte interface (CEI) at high potentials. This thesis explores critical interfaces in both Li- and K-based DIBs and considers strategies to mitigate these instabilities, based on a combination of electrode and electrolyte engineering. The influence of the electrolyte salt and solvent on the CEI is studied through electrochemical characterization methods and X-ray photoelectron spectroscopy (XPS). Conventional LiPF6-based electrolytes are contrasted to formulations using high concentrations of lithium imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The impact of incorporating functional additives and precycling protocols to reduce electrochemical irreversibility is discussed for Li4Ti5O12‑graphite and MoS2-graphite cells tailored for Li- and K-based DIBs, respectively. In addition, a ternary ionogel is introduced as a novel electrolyte platform for DIBs due to its promising ionic conductivity, oxidative stability and mechanical properties. Finally, the impact of different electrode binders on the surface chemistry and electrochemical performance of the graphite cathode is elucidated. In summary, this work indicated that a passivating, anion conducting CEI is key to enabling dual-ion batteries. Despite the cumbersome nature of this task, ways forward were highlighted both in terms of concrete examples, such as the construction of DIBs incorporating functional additives (e.g. triallyl phosphate) and binders (e.g. poly(vinylidene fluoride-co-hexafluoropropylene)), and in terms of methodology, including the design of reliable cycling protocols to evaluate DIB-performance.
  •  
3.
  • Amici, Julia, et al. (författare)
  • A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • This roadmap presents the transformational research ideas proposed by "BATTERY 2030+," the European large-scale research initiative for future battery chemistries. A "chemistry-neutral" roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this "chemistry neutral" approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy