SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Platzer Björkman Charlotte Professor) "

Search: WFRF:(Platzer Björkman Charlotte Professor)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Frisk, Christopher, 1985- (author)
  • Modeling and electrical characterization of Cu(In,Ga)Se2 and Cu2ZnSnS4 solar cells
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • In this thesis, modeling and electrical characterization have been performed on Cu(In,Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) thin film solar cells, with the aim to investigate potential improvements to power conversion efficiency for respective technology. The modeling was primarily done in SCAPS, and current-voltage (J-V), quantum efficiency (QE) and capacitance-voltage (C-V) were the primary characterization methods. In CIGS, models of a 19.2 % efficient reference device were created by fitting simulations of J-V and QE to corresponding experimental data. Within the models, single and double GGI = Ga/(Ga+In) gradients through the absorber layer were optimized yielding up to 2 % absolute increase in efficiency, compared to the reference models. For CIGS solar cells of this performance level, electron diffusion length (Ln) is comparable to absorber thickness. Thus, increasing GGI towards the back contact acts as passivation and constitutes largest part of the efficiency increase. For further efficiency increase, majority bottlenecks to improve are optical losses and electron lifetime in the CIGS. In a CZTS model of a 6.7 % reference device, bandgap (Eg) fluctuations and interface recombination were shown to be the majority limit to open circuit voltage (Voc), and Shockley-Read-Hall (SRH) recombination limiting Ln and thus being the majority limit to short-circuit current and fill-factor. Combined, Eg fluctuations and interface recombination cause about 10 % absolute loss in efficiency, and SRH recombination about 9 % loss, compared to an ideal system. Part of the Voc-deficit originates from a cliff-type conduction band offset (CBO) between CZTS and the standard CdS buffer layer, and the energy of the dominant recombination path (EA) is around 1 eV, well below Eg for CZTS. However, it was shown that the CBO could be adjusted and improved with Zn1-xSn­xOy buffer layers. Best results gave EA = 1.36 eV, close to Eg = 1.3-1.35 eV for CZTS as given by photoluminescence, and the Voc-deficit decreased almost 100 mV. Experimentally by varying the absorber layer thickness in CZTS devices, the efficiency saturated at <1 μm, due to short Ln, expected to be 250-500 nm, and narrow depletion width, commonly of the order 100 nm in in-house CZTS. Doping concentration (NA) determines depletion width, but is critical to device performance in general. To better estimate NA with C-V, ZnS and CZTS sandwich structures were created, and in conjunction with simulations it was seen that the capacitance extracted from CZTS is heavily frequency dependent. Moreover, it was shown that C-V characterization of full solar cells may underestimate NA greatly, meaning that the simple sandwich structure might be preferable in this type of analysis. Finally, a model of the Cu2ZnSn(S,Se)4 was created to study the effect of S/(S+Se) gradients, in a similar manner to the GGI gradients in CIGS. With lower Eg and higher mobility for pure selenides, compared to pure sulfides, it was seen that increasing S/(S+Se) towards the back contact improves efficiency with about 1 % absolute, compared to the best ungraded model where S/(S+Se) = 0.25. Minimizing Eg fluctuation in CZTS in conjunction with suitable buffer layers, and improving Ln in all sulfo-selenides, are needed to bring these technologies into the commercial realm.
  •  
2.
  • Pettersson, Jonas, 1981- (author)
  • Modelling Band Gap Gradients and Cd-free Buffer Layers in Cu(In,Ga)Se2 Solar Cells
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • A deeper understanding of Cu(In,Ga)Se2 (CIGS) solar cells is important for the further improvement of these devices. This thesis is focused on the use of electrical modelling as a tool for pursuing this aim. Finished devices and individual layers are characterized and the acquired data are used as input in the simulations. Band gap gradients are accounted for when modelling the devices. The thesis is divided into two main parts. One part that treats the influence of cadmium free buffer layers, mainly atomic layer deposited (Zn,Mg)O, on devices and another part in which the result of CIGS absorber layer modifications is studied. Recombination analysis indicates that interface recombination is limitting the open circuit voltage (Voc) in cells with ZnO buffer layers. This recombination path becomes less important when magnesium is introduced into the ZnO giving a positive conduction band offset (CBO) towards the CIGS absorber layer. Light induced persistent photoconductivity (PPC) is demonstrated in (Zn,Mg)O thin films. Device modelling shows that the measured PPC, coupled with a high density of acceptors in the buffer-absorber interface region, can explain light induced metastable efficiency improvement in CIGS solar cells with (Zn,Mg)O buffer layers. It is shown that a thin indium rich layer closest to the buffer does not give any significant impact on the performance of devices dominated by recombination in the CIGS layer. In our cells with CdS buffer the diffusion length in the CIGS layer is the main limitting factor. A thinner CIGS layer improves Voc by reducing recombination. However, for thin enough absorber layers Voc deteriorates due to recombination at the back contact. Interface recombination is a problem in thin devices with Zn(O,S) buffer layers. This recombination path is overshadowed in cells of standard thickness by recombination in the CIGS bulk. Thin cells with Zn(O,S) buffer layers have a higher efficiency than CdS cells with the same absorber thickness.
  •  
3.
  • Bras, Patrice (author)
  • Sputtering-based processes for thin film chalcogenide solar cells on steel substrates
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Thin film chalcogenide solar cells are promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS)-based devices are already produced at industrial scale and record laboratory efficiency surpasses 22 %. Cu2ZnSn(S,Se)4 (CZTS) is an alternative material that is based on earth-abundant elements. CZTS device efficiency above 12 % has been obtained, indicating a high potential for improvement.In this thesis, in-line vacuum, sputtering-based processes for the fabrication of complete thin film chalcogenide solar cells on stainless steel substrates are studied. CIGS absorbers are deposited in a one-step high-temperature process using compound targets. CZTS precursors are first deposited by room temperature sputtering and absorbers are then formed by high temperature crystallization in a controlled atmosphere. In both cases, strategies for absorber layer improvement are identified and implemented.The impact of CZTS annealing temperature is studied and it is observed that the absorber grain size increases with annealing temperature up to 550 °C. While performance also improves from 420 to 510 °C, a drop in all solar cell parameters is observed for higher temperature. This loss is caused by blisters forming in the absorber during annealing. Blister formation is found to originate from gas entrapment during precursor sputtering. Increase in substrate temperature or sputtering pressure leads to drastic reduction of gas entrapment and hence alleviate blister formation resulting in improved solar cell parameters, including efficiency.An investigation of bandgap grading in industrial CIGS devices is conducted through one-dimensional simulations and experimental verification. It is found that a single gradient in the conduction band edge extending throughout the absorber combined with a steeper back-grading leads to improved solar cell performance, mainly due to charge carrier collection enhancement.The uniformity of both CIGS and CZTS 6-inch solar cells is assessed. For CZTS, the device uniformity is mainly limited by the in-line annealing process. Uneven heat and gas distribution resulting from natural convection phenomenon leads to significant lateral variation in material properties and device performance. CIGS solar cell uniformity is studied through laterally-resolved material and device characterization combined with SPICE network modeling. The absorber material is found to be laterally homogeneous. Moderate variations observed at the device level are discussed in the context of large area sample characterization.Power conversion efficiency values above 15 % for 225 cm2 CIGS cells and up to 5.1 % for 1 cm2 CZTS solar cells are obtained.
  •  
4.
  • Englund, Sven, 1987- (author)
  • Alternative back contacts for CZTS thin film solar cells
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • In this thesis, alternative back contacts for Cu2ZnSnS4 (CZTS) thin film solar cells were investigated. Back contacts for two different configurations were studied, namely traditional single-junction cells with opaque back contacts and transparent back contacts for possible use in either tandem or bifacial solar cell configuration.CZTS is processed under chemically challenging conditions, such as high temperature and high chalcogen partial pressure. This places great demands on the back contact. Mo is the standard choice as back contact, but reacts with chalcogens to form MoS(e)2 while the CZTS decomposes, mainly into detrimental secondary phases. Thin MoS(e)2 is assumed to be beneficial for the electrical contact, but excessive thickness is detrimental to solar cell performance. The back contact acts as diffusion medium for Na during annealing when soda-lime glass is used as substrate. Na influences both defect passivation and doping in CZTS and increases the efficiency of the solar cells. The ability of the back contact to facilitate Na diffusion is an important property that must be monitored.Titanium nitride (TiN) as an interlayer between the opaque molybdenum (Mo) and CZTS as well as complete replacement of Mo with TiN back contacts were investigated. TiN was found to be chemically stable in typical anneal conditions. Formation of MoS(e)2 was observed only in areas where the TiN interlayers did not fully cover the Mo, following from the surface roughness of Mo and insufficient step-coverage of the sputter-deposition of TiN. Thick TiN interlayers (200 nm) were found to increase the diffusion of Na to the absorber layer from the glass substrate. For precursors annealed in sulfur atmosphere, improved device efficiency was observed for increased TiN thickness.Transparent back contacts can be used in either tandem configurations where two or more absorber materials are used to more efficiently use different parts of the solar spectra, or in bifacial solar cells to allow light to reach the absorber layer from two sides and thus increase the photocurrent. Thus far only a few studies have investigated transparent back contact materials in CZTS solar cell devices. Antimony-doped tin oxide (ATO) was studied as a transparent back contact for CZTS. Annealing of bare ATO resulted in complete reaction with S to form Sn–S compounds. When annealed below the CZTS, ATO was found to be stable at low temperature (<550 °C), and in some aspects even improved its properties. ATO back contacts resulted in significantly increased formation of Sn–S secondary phases on the CZTS absorber surface compared to the Mo reference. Sn–S secondary compounds on the absorber surface made it challenging to obtain good device performance. Adhesion and device behavior could be improved by pre-addition of NaF on the precursor prior to annealing.
  •  
5.
  •  
6.
  • Platzer-Björkman, Charlotte, 1976- (author)
  • Band Alignment Between ZnO-Based and Cu(In,Ga)Se2 Thin Films for High Efficiency Solar Cells
  • 2006
  • Doctoral thesis (other academic/artistic)abstract
    • Thin-film solar cells based on Cu(In,Ga)Se2 contain a thin buffer layer of CdS in their standard configuration. In order to avoid cadmium in the device for environmental reasons, Cd-free alternatives are investigated. In this thesis, ZnO-based films, containing Mg or S, grown by atomic layer deposition (ALD), are shown to be viable alternatives to CdS. The CdS is an n-type semiconductor, which together with the n-type ZnO top-contact layers form the pn-junction with the p-type Cu(In,Ga)Se2. From device modeling it is known that a buffer layer conduction band (CB) position of 0-0.4 eV above that of the Cu(In,Ga)Se2 layer is consistent with high photovoltaic performance. For the Cu(In,Ga)Se2/ZnO interface this position is measured by photoelectron spectroscopy and optical methods to –0.2 eV, resulting in increased interface recombination. By including sulfur into ZnO, a favorable CB position to Cu(In,Ga)Se2 can be obtained for appropriate sulfur contents, and device efficiencies of up to 16.4% are demonstrated in this work. From theoretical calculations and photoelectron spectroscopy measurements, the shift in the valence and conduction bands of Zn(O,S) are shown to be non-linear with respect to the sulfur content, resulting in a large band gap bowing. ALD is a suitable technique for buffer layer deposition since conformal coverage can be obtained even for very thin films and at low deposition temperatures. However, deposition of Zn(O,S) is shown to deviate from an ideal ALD process with much larger sulfur content in the films than expected from the precursor pulsing ratios and with a clear increase of sulfur towards the Cu(In,Ga)Se2 layer. For (Zn,Mg)O, single-phase ZnO-type films are obtained for Mg/(Zn+Mg) < 0.2. In this region, the band gap increases almost linearly with the Mg content resulting in an improved CB alignment at the heterojunction interface with Cu(In,Ga)Se2 and high device efficiencies of up to 14.1%.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6
Type of publication
doctoral thesis (5)
journal article (1)
Type of content
other academic/artistic (6)
Author/Editor
Platzer-Björkman, Ch ... (2)
Weihed, Pär (1)
Hultman, Lars (1)
Berggren, Magnus (1)
Zou, Xiaodong (1)
Kloo, Lars (1)
show more...
Rensmo, Håkan (1)
Stolt, Lars (1)
Scragg, Jonathan J., ... (1)
Platzer Björkman, Ch ... (1)
Abrahamsson, Maria, ... (1)
Tybrandt, Klas (1)
Schneider, Jochen M. (1)
Bergström, Lennart (1)
Edman, Ludvig, 1967- (1)
Eriksson, Olle (1)
Rosén, Johanna (1)
Persson, Cecilia (1)
Mikkelsen, Anders (1)
Antti, Marta-Lena (1)
Palmqvist, Anders, 1 ... (1)
Moons, Ellen, profes ... (1)
Dick Thelander, Kimb ... (1)
Selleby, Malin, 1963 ... (1)
Erhart, Paul, 1978 (1)
Åstrand, Maria (1)
Ankarcrona, Caroline (1)
Olsson, Jörgen, Prof ... (1)
Rudén, Christina (1)
Lundberg, Mats W. (1)
Kessler, John (1)
Bras, Patrice (1)
Frisk, Christopher, ... (1)
Jaremalm, Eric (1)
Sterner, Jan, PhD (1)
Bernudez, Veronica, ... (1)
Englund, Sven, 1987- (1)
Platzer Björkman, Ch ... (1)
Gütay, Levent, Dr. (1)
Krč, Janez, Professo ... (1)
Sundgren, Jan- Eric (1)
Mazur, Sara (1)
Baltzar, Malin (1)
de Laval, Pontus (1)
Björkman, Charlotte ... (1)
Åstrand, Mattias (1)
Edoff, Marika, Profe ... (1)
Pettersson, Jonas, 1 ... (1)
Platzer-Björkman, Ch ... (1)
Burgelman, Marc, Pro ... (1)
show less...
University
Uppsala University (5)
Umeå University (1)
Royal Institute of Technology (1)
Luleå University of Technology (1)
Lund University (1)
Chalmers University of Technology (1)
show more...
Karlstad University (1)
show less...
Language
English (6)
Research subject (UKÄ/SCB)
Engineering and Technology (4)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view