SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pochet R) "

Search: WFRF:(Pochet R)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Hu, D., et al. (author)
  • Transcriptional signature of human pro-inflammatory T(H)17 cells identifies reduced IL10 gene expression in multiple sclerosis
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Journal article (peer-reviewed)abstract
    • We have previously reported the molecular signature of murine pathogenic T(H)17 cells that induce experimental autoimmune encephalomyelitis (EAE) in animals. Here we show that human peripheral blood IFN-gamma(+) IL-17(+) (T(H)1/17) and IFN-gamma(-)-IL-17(+) (T(H)17) CD4(+) T cells display distinct transcriptional profiles in high-throughput transcription analyses. Compared to T(H)17 cells, T(H)1/17 cells have gene signatures with marked similarity to mouse pathogenic T(H)17 cells. Assessing 15 representative signature genes in patients with multiple sclerosis, we find that T(H)1/17 cells have elevated expression of CXCR3 and reduced expression of IFNG, CCL3, CLL4, GZMB, and IL10 compared to healthy controls. Moreover, higher expression of IL10 in T(H)17 cells is found in clinically stable vs. active patients. Our results define the molecular signature of human pro-inflammatory T(H)17 cells, which can be used to both identify pathogenic T(H)17 cells and to measure the effect of treatment on T(H)17 cells in human autoimmune diseases.
  •  
3.
  • Kirby, Andrew, et al. (author)
  • Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:3, s. 299-303
  • Journal article (peer-reviewed)abstract
    • Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (similar to 1.5-5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.
  •  
4.
  • Rezende, RM, et al. (author)
  • Identification and characterization of latency-associated peptide-expressing γδ T cells
  • 2015
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6, s. 8726-
  • Journal article (peer-reviewed)abstract
    • γδ T cells are a subset of lymphocytes specialized in protecting the host against pathogens and tumours. Here we describe a subset of regulatory γδ T cells that express the latency-associated peptide (LAP), a membrane-bound TGF-β1. Thymic CD27+IFN-γ+CCR9+α4β7+TCRγδ+ cells migrate to the periphery, particularly to Peyer’s patches and small intestine lamina propria, where they upregulate LAP, downregulate IFN-γ via ATF-3 expression and acquire a regulatory phenotype. TCRγδ+LAP+ cells express antigen presentation molecules and function as antigen presenting cells that induce CD4+Foxp3+ regulatory T cells, although TCRγδ+LAP+ cells do not themselves express Foxp3. Identification of TCRγδ+LAP+ regulatory cells provides an avenue for understanding immune regulation and biologic processes linked to intestinal function and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view