SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pointon A) "

Sökning: WFRF:(Pointon A)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abe, K., et al. (författare)
  • Neutron tagging following atmospheric neutrino events in a water Cherenkov detector
  • 2022
  • Ingår i: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 mu s.
  •  
2.
  •  
3.
  • Al Kharusi, S., et al. (författare)
  • SNEWS 2.0 : a next-generation supernova early warning system for multi-messenger astronomy
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:3
  • Forskningsöversikt (refereegranskat)abstract
    • The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.
  •  
4.
  • Pointon, Michael A., et al. (författare)
  • A Multi-proxy Provenance Study of Late Carboniferous to Middle Jurassic Sandstones in the Eastern Sverdrup Basin and Its Bearing on Arctic Palaeogeographic Reconstructions
  • 2022
  • Ingår i: Geosciences. - : MDPI AG. - 2076-3263. ; 13:1, s. 10-10
  • Tidskriftsartikel (refereegranskat)abstract
    • A multi-proxy provenance study of Late Carboniferous to Middle Jurassic sandstones from the eastern Sverdrup Basin was undertaken employing optical petrography and heavy mineral analysis, chemical analysis of apatite, garnet and rutile grains, as well as detrital zircon U–Pb geochronology and Hf isotope analysis. Late Carboniferous to Middle Jurassic strata on the southern basin margin are inferred as being predominantly reworked from Silurian to Devonian strata within the adjacent Franklinian Basin succession. Higher-grade metamorphic detritus appeared during Middle to Late Triassic times and indicates exhumation and erosion of lower (Neoproterozoic to Cambrian) levels within the Franklinian Basin succession and/or a direct detrital input from the Canadian-Greenland Shield. The provenance of northern-derived sediments is more enigmatic owing to the subsequent opening of the Arctic Ocean. Northern-derived Middle Permian to Early Triassic sediments were likely derived from proximal areas of the Chukotkan part of the Arctic Alaska-Chukotka microplate. Late Triassic northern-derived sediments have different detrital zircon U–Pb age spectra from Middle Permian to Early Triassic ones and were likely derived from the Uralian orogenic belt and/or the Arctic Uralides. The loss of this sand input during latest Triassic times is interpreted to reflect drainage reorganisation farther upstream on the Barents Shelf. Middle Jurassic sands in the northern and axial parts of the basin were largely reworked from local northern-derived Late Triassic strata. This may have been facilitated by rift flank uplift of the northern basin margin in response to rifting in the adjacent proto-Amerasia Basin.
  •  
5.
  • Ewart, L, et al. (författare)
  • Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery
  • 2018
  • Ingår i: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 58, s. 65-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing the early detection of new therapies that are likely to carry a safety liability in the context of the intended patient population would provide a major advance in drug discovery. Microphysiological systems (MPS) technology offers an opportunity to support enhanced preclinical to clinical translation through the generation of higher-quality preclinical physiological data. In this review, we highlight this technological opportunity by focusing on key target organs associated with drug safety and metabolism. By focusing on MPS models that have been developed for these organs, alongside other relevant in vitro models, we review the current state of the art and the challenges that still need to be overcome to ensure application of this technology in enhancing drug discovery.
  •  
6.
  • Pointon, Michael A, et al. (författare)
  • Mixed local and ultra-distal volcanic ash deposition within the Upper Cretaceous Kanguk Formation, Sverdrup Basin, Canadian Arctic Islands
  • 2019
  • Ingår i: Geological Magazine. - : Cambridge University Press. - 0016-7568 .- 1469-5081. ; 156:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The Upper Cretaceous Kanguk Formation of the Sverdrup Basin, Canadian Arctic Islands, contains numerous diagenetically altered volcanic ash layers (bentonites). Eleven bentonites were sampled from an outcrop section on Ellesmere Island for U–Pb zircon secondary ion mass spectrometry dating and whole-rock geochemical analysis. Two distinct types of bentonite are identified from the geochemical data. Relatively thick (0.1 to 5 m) peralkaline rhyolitic to trachytic bentonites erupted in an intraplate tectonic setting. These occur throughout the upper Turonian to lower Campanian (c. 92–83 Ma) outcrop section and are likely associated with the alkaline phase of the High Arctic Large Igneous Province. Two thinner (<5 cm) subalkaline dacitic to rhyolitic bentonites of late Turonian to early Coniacian age (c. 90–88 Ma) are also identified. The geochemistry of these bentonites is consistent with derivation from volcanoes within an active continental margin tectonic setting. The lack of nearby potential sources of subalkaline magmatism, together with the thinner bed thickness of the subalkaline bentonites and the small size of zircon phenocrysts therein (typically 50–80 μm in length) are consistent with a more distal source area. The zircon U–Pb age and whole-rock geochemistry of these two subalkaline bentonites correlate with an interval of intense volcanism in the Okhotsk–Chukotka Volcanic Belt, Russia. It is proposed that during late Turonian to early Coniacian times intense volcanism within the Okhotsk–Chukotka Volcanic Belt resulted in widespread volcanic ash dispersal across Arctic Alaska and Canada, reaching as far east as the Sverdrup Basin, more than 3000 km away.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy