SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pollak Joanna) "

Sökning: WFRF:(Pollak Joanna)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grubb, Anders, et al. (författare)
  • Cystatin C, a marker for successful aging and glomerular filtration rate, is not influenced by inflammation.
  • 2011
  • Ingår i: Scandinavian Journal of Clinical and Laboratory Investigation. - : Informa UK Limited. - 1502-7686 .- 0036-5513. ; 71, s. 145-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Background. The plasma level of cystatin C is a better marker than plasma creatinine for successful aging. It has been assumed that the advantage of cystatin C is not only due to it being a better marker for glomerular filtration rate (GFR) than creatinine, but also because an inflammatory state of a patient induces a raised cystatin C level. However, the observations of an association between cystatin C level and inflammation stem from large cohort studies. The present work concerns the cystatin C levels and degree of inflammation in longitudinal studies of individual subjects without inflammation, who undergo elective surgery. Methods. Cystatin C, creatinine, and the inflammatory markers CRP, serum amyloid A (SAA), haptoglobin and orosomucoid were measured in plasma samples from 35 patients the day before elective surgery and subsequently during seven consecutive days. Results. Twenty patients had CRP-levels below 1 mg/L before surgery and low levels of the additional inflammatory markers. Surgery caused marked inflammation with high peak values of CRP and SAA on the second day after the operation. The cystatin C level did not change significantly during the observation period and did not correlate significantly with the level of any of the four inflammatory markers. The creatinine level was significantly reduced on the first postoperative day but reached the preoperative level towards the end of the observation period. Conclusion. The inflammatory status of a patient does not influence the role of cystatin C as a marker of successful aging, nor of GFR.
  •  
2.
  • Pollak, Joanna, et al. (författare)
  • Production of Cystatin C Wild Type and Stabilized Mutants
  • 2010
  • Ingår i: EJIFCC. - 1650-3414. ; 20:4, s. 70-166
  • Tidskriftsartikel (refereegranskat)abstract
    • Cystatin C is produced in all nucleated cells. It has various functions and biological activities. Researchers are focused on its role in kidney diseases as a marker of glomerular filtration but also as a very important link in development of amyloid diseases. This work describes expression and purification of both wild type (wt) and stabilized form (stab 1 and 2) of wt cystatin C and amyloid-forming L68Q mutant of cystatin C. The recombinant cystatin C can be used in projects requiring pure cystatin C to examine models of dimerization and fibrils formation as well as a standard in clinical tests.
  •  
3.
  • Wright, Graham D., et al. (författare)
  • Recognising the importance and impact of Imaging Scientists: Global guidelines for establishing career paths within core facilities
  • 2024
  • Ingår i: JOURNAL OF MICROSCOPY. - 0022-2720 .- 1365-2818. ; 294:3, s. 397-410
  • Tidskriftsartikel (refereegranskat)abstract
    • In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world. In the exciting world of scientific research, imaging core facilities are essential hubs where scientists use advanced technologies to conduct experiments and uncover fascinating discoveries. What makes these facilities remarkable is that multiple scientists can access and utilise a variety of instruments for a wide range of multidisciplinary research projects, fostering collaboration and innovation. At the forefront of this scientific adventure are Imaging Scientists, experts who play a crucial role in planning experiments, preparing materials, adapting and acquiring technologies, collecting data, training and supporting researchers, analysing images and forming conclusions. Despite their pivotal contributions, there are challenges in recognising the importance of Imaging Scientists and ensuring they have ample opportunities to advance in their careers. These challenges include a mismatch between the typical academic career path and the unique roles and responsibilities of Imaging Scientists, a lack of widespread understanding of their value plus financial constraints, insufficient training opportunities, and difficulties in attracting and retaining talented individuals. To address these issues, Global BioImaging (GBI; www.globalbioimaging.org) has brought together Imaging Scientists from around the world to develop a generally applicable set of recommendations in three key areas: highlighting the significance and value of Imaging Scientists, making it easier to recruit and retain them, and supporting their ongoing learning and professional growth. A notable concept is to reimagine the traditional separation between academic roles and technical support roles. GBI envisions that these recommendations will not only benefit imaging facilities but also prove valuable for research institutions housing diverse technologies organised into core facilities. Recognising the diverse nature of research performing institutions globally, the GBI community sees this guide as a starting point that will initiate dialogue and instigate change, which should be periodically updated as the needs of Imaging Scientists change. This initial version lays a solid foundation for future enhancements, contributing to the acknowledgement and support of the invaluable work done by Imaging Scientists on a global scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy