SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Polvi Lina E.) "

Sökning: WFRF:(Polvi Lina E.)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Poeppl, Ronald E., et al. (författare)
  • (Dis)connectivity in hydro-geomorphic systems – emerging concepts and their applications
  • 2023
  • Ingår i: Earth Surface Processes and Landforms. - : John Wiley & Sons. - 0197-9337 .- 1096-9837. ; 48:6, s. 1089-1094
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In geomorphology, connectivity has emerged as a framework for understanding the transfer of water and sediment through landscapes. Over the past decade, sessions on (dis)connectivity at the General Assembly of the European Geosciences Union (EGU), and more recently, three mini-conferences in 2020 and 2021 called ‘Connectivity Conversations’, organized by the International Association of Geomorphologists (IAG) working group on ‘Connectivity in Geomorphology’, have created a space for the exchange of ideas relating to (dis)connectivity in geomorphology and related disciplines. The result of these initiatives has been a collection of research articles related to a special issue (SI) entitled ‘(Dis)connectivity in hydro-geomorphic systems – emerging concepts and their applications’. In this article, we provide a synthesis that embraces the SI contributions related to the application of the connectivity concept in different environments and geomorphic process domains, spatial and temporal scales, types and spatial dimensions of connectivity and the role of human impacts and associated river and catchment management aspects.
  •  
2.
  • Polvi, Lina E., et al. (författare)
  • Seismic Monitoring of a Subarctic River : Seasonal Variations in Hydraulics, Sediment Transport, and Ice Dynamics
  • 2020
  • Ingår i: Journal of Geophysical Research - Earth Surface. - : American Geophysical Union (AGU). - 2169-9003 .- 2169-9011. ; 125:7
  • Tidskriftsartikel (refereegranskat)abstract
    • High-latitude rivers are commonly covered by ice for up to one third of the year. Our understanding of the effects of ice on channel morphodynamics and bedload transport is hindered by the difficulties of sensing through the ice and dangers of field work on thin ice or during ice break-up. To avoid this drawback, we used seismic signals to interpret processes and quantify water and sediment fluxes. Our objective was to determine seasonal differences in hydraulics and bedload sediment transport under ice-covered versus open-channel flow conditions using a small seismic network and to provide a first-order estimation of sediment flux in a Fennoscandian river. Our study reach was on a straight, low-gradient section of the Savar River in northern Sweden. Interpretations of seismic signals, from a station 40 m away from the river, and inverted physical models of river stage and bedload flux indicate clear seasonal differences between ice-covered and open-channel flow conditions. Diurnal cycles in seismic signals reflecting turbulence and sediment transport are evident directly after ice break-up. Analysis of seismic signals of ice-cracking support our visual interpretation of ice break-up timing and the main ice break-up mechanism as thermal rather than mechanical. Assuming the bulk of sediment moves during ice break-up and the snowmelt flood, we calculate a minimum annual sediment flux of 56.2 +/- 0.7 t/km(2), which drastically reduces the uncertainty from previous estimates (0-50 t/km(2)) that exclude ice-covered or ice break-up periods.
  •  
3.
  • Frainer, André, et al. (författare)
  • Enhanced ecosystem functioning following stream restoration : The roles of habitat heterogeneity and invertebrate species traits
  • 2018
  • Ingår i: Journal of Applied Ecology. - : Wiley-Blackwell Publishing Inc.. - 0021-8901 .- 1365-2664. ; 55:1, s. 377-385
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Habitat restoration is increasingly undertaken in degraded streams and rivers to help improve biodiversity and ecosystem functioning. Follow-up assessments focused on outcomes for biodiversity have often found scant evidence for recovery, raising concerns about the efficacy of habitat restoration for improving ecological integrity. However, responses of other ecological variables, such as ecosystem process rates and the functional trait composition of biological assemblages, have been little evaluated.2. We assessed how the restoration of habitat heterogeneity affected multiple functional parameters in 20 boreal stream reaches encompassing both more and less extensively restored sites, as well as channelised and natural reference sites. We further assessed relationships between our functional parameters and a fluvial geomorphic measure of habitat heterogeneity.3. Leaf decomposition was positively related to habitat heterogeneity. This was associated with shifts in the functional composition of detritivore assemblages, with the most obligate litter consumers more prominent in reaches showing higher habitat heterogeneity. The deposition of fine particulate organic matter was consistently higher in restored than channelised sites, and was positively related to the heterogeneity gradient. Algal biomass accrual per unit area did not vary either with restoration or the heterogeneity gradient.4. Synthesis and applications. Our findings demonstrate that restoration of river habitat heterogeneity can enhance retention and decomposition of organic matter, key ecosystem properties underpinning ecosystem functioning and service delivery. Significantly, enhanced litter decomposition was linked with a change in the functional composition rather than diversity of detritivore assemblages. Future evaluation of the success of habitat restorations should incorporate quantification of ecosystem processes and the functional traits of biota, in addition to measures of fluvial geomorphology and more traditional biotic metrics, to facilitate a more comprehensive and mechanistic assessment of ecological responses.
  •  
4.
  • Gardeström, Johanna, et al. (författare)
  • Demonstration Restoration Measures in Tributaries of the Vindel River Catchment
  • 2013
  • Ingår i: Ecology and Society. - : Resilience Alliance Publications. - 1708-3087. ; 18:3, s. Article Number: UNSP 8-
  • Tidskriftsartikel (refereegranskat)abstract
    • Some ecological restoration projects include elements of trial and error where new measures are repeatedly tried, evaluated, and modified until satisfactory results are achieved. Thereafter, the resulting methods may be applied on larger scales. A difficult step is judging whether developed "best-practice" methods have become reasonably ecologically functional or whether further experimentation "demonstration" methods can lead to yet better results. Here, we use a stream restoration project as a case study for evaluating methods and abiotic effects and outlining stakeholder support for demonstration restoration measures, rather than only using best-practice methods. Our work was located in the Vindel River system, a free-flowing river that is part of the Natura 2000 network. The river was exploited for timber floating from 1850-1976, and rapids in the main channel and tributaries below timberline were channelized to increase timber transport capacity. Several side channels in multi-channeled rapids were blocked and the flow was concentrated to a single channel from which boulders and large wood were removed. Hence, previously heterogeneous environments were replaced by more homogeneous systems with limited habitat for riverine species. The restoration project strives to alleviate the effects of fragmentation and channelization in affected rapids by returning coarse sediment from channel margins to the main channel. However, only smaller, angular sediment is available given blasting of large boulders, and large (old-growth) wood is largely absent; therefore, original levels of large boulders and large wood in channels cannot be achieved with standard restoration practices. In 10 demonstration sites, we compensated for this by adding large boulders and large wood (i.e., entire trees) from adjacent upland areas to previously best-practice restored reaches and compared their hydraulic characteristics with 10 other best-practice sites. The demonstration sites exhibited significantly reduced and more variable current velocities, and wider channels, but with less variation than pre-restoration. The ecological response to this restoration has not yet been studied, but potential outcomes are discussed.
  •  
5.
  • Hasselquist, Eliza Maher, et al. (författare)
  • Contrasting effects of geomorphic complexity on diversity of three aquatic organism groups after stream restoration
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Ecological theory states that greater habitat heterogeneity should support higher biodiversity. Many stream restoration projects aim to increase geomorphic complexity, assuming that this increases habitat heterogeneity and, thus, biodiversity. However, little evidence has been published that supports this theory, especially with respect to stream restoration and aquatic organisms.Previous assessments of stream habitat restoration have suffered from four major limitations: (1) incomplete quantification of habitat complexity metrics, (2) assessment of the responses of only one organism group, most often macroinvertebrates, (3) mismatch between scale of restoration and scale of disturbance, and (4) limited number of restoration measures applied.We used 12 metrics of geomorphic complexity spanning five dimensions of complexity (sediment grain size distribution, longitudinal profile, cross section, planform, and instream wood) to evaluate if the diversity, abundance and community composition of three aquatic organism groups (benthic macroinvertebrates, diatoms and macrophytes) relate positively to complexity along near-natural, restored and channelised stream reaches in rural northern Sweden where disturbance to the streams has been primarily reach-scale channelisation to facilitate timber floating.We found that the variation in biodiversity and abundance within each of the three organism groups could be described by multiple regression models that included only geomorphic complexity metrics, but the variation within an organism group could rarely be described by only one metric of complexity in isolation. Rather, three metrics were needed on average to describe the variation in biodiversity and abundance, and rarely did all metrics relate positively to diversity. Sediment grain size distribution metrics were most often significant as explanatory variables, but were inconsistent in the direction of influence. The other four dimensions of complexity were less consistently significant but were nearly all positively related to our diversity metrics.Most of the variation in these metrics was driven by advanced restoration techniques and to a lesser extent older best practice techniques. Three complexity metrics were most often included in multiple regression models as well as described community composition in ordinations:  a metric quantifying heterogeneity of small sediment sizes, a metric that represents the variation in stream depth along the longitudinal profile, and instream wood metrics. Therefore, specifically these metrics could be targets for future restoration. The organism groups were not concordant in their patterns of diversity, abundance, or community composition; thus, none can be used as a surrogate in monitoring biodiversity of these sites.Synthesis and applications. Geomorphic complexity should be measured in multiple dimensions, and ideally in all five dimensions, to understand the full breadth of restoration impacts to which organisms could be responding. More than one organism group should be used in monitoring to ensure biodiversity goals are met. Finally, even though the scale of the restorations matched the scale of the disturbance at the reach scale, the older best practice methods of restoration rarely restored the large-scale features necessary to bring the sites up to their potential levels of complexity as these elements (large boulders, bedrock, log jams) had been destroyed or removed from the system. Although the advanced restoration sites were the youngest, advanced restoration techniques that added big boulders, coarse gravel and instream wood increased complexity to a level that elicited a biological response. Finally, the complexity level needed to elicit a biological response could be difficult to understand for a given system, so we suggest doing restoration work in an experimental way in collaboration with geomorphologists to determine what level of complexity is needed.
  •  
6.
  • Hasselquist, Eliza Maher, et al. (författare)
  • Contrasting Responses among Aquatic Organism Groups to Changes in Geomorphic Complexity Along a Gradient of Stream Habitat Restoration : Implications for Restoration Planning and Assessment
  • 2018
  • Ingår i: Water. - : MDPI. - 2073-4441. ; 10:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Many stream restoration projects aim to increase geomorphic complexity, assuming that this increases habitat heterogeneity and, thus, biodiversity. However, empirical data supporting these linkages remain scant. Previous assessments of stream restoration suffer from incomplete quantification of habitat complexity, or a narrow focus on only one organism group and/or one restoration measure, limiting learning. Based on a comprehensive quantification of geomorphic complexity in 20 stream reaches in northern Sweden, ranging from streams channelized for timber floating to restored and reference reaches, we investigated responses of macroinvertebrates, diatoms, and macrophytes to multiple geomorphic metrics. Sediment size heterogeneity, which was generally improved in restored sites, favored macroinvertebrate and diatom diversity and macroinvertebrate abundance. In contrast, macrophyte diversity responded to increased variation along the longitudinal stream profile (e.g., step-pools), which was not consistently improved by the restoration. Our analyses highlight the value of learning across multiple restoration projects, both in identifying which aspects of restoration have succeeded, and pinpointing other measures that might be targeted during adaptive management or future restoration. Given our results, a combination of restoration measures targeting not only sediment size heterogeneity, but also features such as step-pools and instream wood, is most likely to benefit benthic biota in streams.
  •  
7.
  • Hasselquist, Eliza Maher, et al. (författare)
  • Time for recovery of riparian plants in restored northern Swedish streams : A chronosequence study
  • 2015
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 25:5, s. 1373-1389
  • Tidskriftsartikel (refereegranskat)abstract
    • A lack of ecological responses in stream restoration projects has been prevalent throughout recent literature with many studies reporting insufficient time for recovery. We assessed the relative importance of time, site variables, and landscape setting for understanding how plant species richness and understory productivity recover over time in riparian zones of northern Swedish streams. We used a space-for-time substitution consisting of 13 stream reaches restored 5-25 years ago, as well as five unrestored channelized reference reaches. We inventoried the riparian zone for all vascular plant species along 60-m study reaches and quantified cover and biomass in plots. We found that while species richness increased with time, understory biomass decreased. Forbs made up the majority of the species added, while the biomass of graminoids decreased the most over time, suggesting that the reduced dominance of graminoids favored less productive forbs. Species richness and density patterns could be attributed to dispersal limitation, with anemochorous species being more associated with time after restoration than hydrochorous, zoochorous, or vegetatively reproducing species. Using multiple linear regression, we found that time along with riparian slope and riparian buffer width (e.g., distance to logging activities) explained the most variability in species richness, but that variability in total understory biomass was explained primarily by time. The plant community composition of restored reaches differed from that of channelized references, but the difference did not increase over time. Rather, different time categories had different successional trajectories that seemed to converge on a unique climax community for that time period. Given our results, timelines for achieving species richness objectives should be extended to 25 years or longer if recovery is defined as a saturation of the accumulation of species over time. Other recommendations include making riparian slopes as gentle as possible given the landscape context and expanding riparian buffer width for restoration to have as much impact as possible.
  •  
8.
  • Hof, Anouschka, et al. (författare)
  • Forest Restoration : Do Site Selection and Restoration Practices Follow Ecological Criteria? A Case Study in Sweden
  • 2021
  • Ingår i: Forests. - : MDPI. - 1999-4907. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The speed with which restoration will, or can, be accomplished depends on the initial state and location of the sites. However, many factors can undermine the process of choosing sites that are deemed the best ecological choice for restoration. Little attention has been paid to whether site selection follows ecological criteria and how this may affect restoration success. We used habitat inventory data to investigate whether ecological criteria for site selection and restoration have been followed, focusing on restoration for the white-backed woodpecker (Dendrocopos leucotos B.) in Sweden. In our study region, which is situated in an intensively managed forest landscape with dense and young stands dominated by two coniferous species, purely ecological criteria would entail that sites that are targeted for restoration would (1) initially be composed of older and more deciduous trees than the surrounding landscape, and (2) be at a scale relevant for the species. Furthermore, restoration should lead to sites becoming less dense and less dominated by coniferous trees after restoration, which we investigated as an assessment of restoration progress. To contextualize the results, we interviewed people involved in the restoration efforts on site. We show that although the first criterion for ecological site selection was largely met, the second was not. More research is needed to assess the motivations of actors taking part in restoration efforts, as well as how they interlink with public efforts. This would allow us to identify possible synergies that can benefit restoration efforts.
  •  
9.
  •  
10.
  • Jonsson, Micael, et al. (författare)
  • Catchment properties predict autochthony in stream filter feeders
  • 2018
  • Ingår i: Hydrobiologia. - : Springer. - 0018-8158 .- 1573-5117. ; 815:1, s. 83-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Stream ecological theory predicts that the use of allochthonous resources declines with increasing channel width, while at the same time primary production and autochthonous carbon use by consumers increase. Although these expectations have found support in several studies, it is not well known how terrestrial runoff and/or inputs of primary production from lakes alter these longitudinal patterns. To investigate this, we analyzed the diet of filter-feeding black fly and caddisfly larvae from 23 boreal streams, encompassing gradients in drainage area, land cover and land use, and distance to nearest upstream lake outlet. In five of these streams, we also sampled repeatedly during autumn to test if allochthony of filter feeders increases over time as new litter inputs are processed. Across sites, filter-feeder autochthony was 21.1-75.1%, did not differ between black fly and caddisfly larvae, was not positively related to drainage area, and did not decrease with distance from lakes. Instead, lake and wetland cover promoted filter-feeder autochthony independently of stream size, whereas catchment-scale forest cover and forestry reduced autochthony. Further, we found no seasonal increase in allochthony, indicating low assimilation of particles derived from autumn litter fall. Hence, catchment properties, rather than local conditions, can influence levels of autochthony in boreal streams.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (27)
annan publikation (2)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Polvi, Lina E. (31)
Nilsson, Christer (16)
Lind, Lovisa (12)
Pilotto, Francesca (4)
Su, Xiaolei (4)
Hasselquist, Eliza M ... (4)
visa fler...
Gardeström, Johanna (3)
Sarneel, Judith M. (3)
Mckie, Brendan (3)
Maher Hasselquist, E ... (3)
Kahlert, Maria (2)
Hjältén, Joakim (2)
Jonsson, Micael (2)
Jørgensen, Dolly (2)
Holmqvist, Daniel (2)
Sandberg, Lisa (2)
Stenroth, Karolina (2)
Wohl, Ellen (2)
Weber, Christine (2)
Lundqvist, Hans (1)
Persson, Henrik (1)
Merritt, David M. (1)
Hof, Anouschka (1)
Kuglerova, Lenka (1)
Sponseller, Ryan A. (1)
Jansson, Roland (1)
Palm, Daniel (1)
Zachrisson, Anna, Do ... (1)
Frainer, André (1)
Dietze, M. (1)
Fältström, Emma (1)
Lotsari, E. (1)
Mckie, Brendan G. (1)
Hoppenreijs, Jacquel ... (1)
Eckstein, R. Lutz (1)
Mason, Richard (1)
Lininger, Katherine ... (1)
Staaf, Rasmus (1)
Winkowska, Małgorzat ... (1)
Baan Hofman, Ruben (1)
Mason, Richard J. (1)
Poeppl, Ronald E. (1)
Turnbull, Laura (1)
Miranda-Melo, Aneliz ... (1)
Baker, Daniel W. (1)
Turowski, J. M. (1)
Alfredsen, Knut T. (1)
visa färre...
Lärosäte
Umeå universitet (29)
Karlstads universitet (11)
Sveriges Lantbruksuniversitet (10)
Luleå tekniska universitet (1)
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Lantbruksvetenskap (6)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy