SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Polyutov S. P.) "

Sökning: WFRF:(Polyutov S. P.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ershov, A. E., et al. (författare)
  • Thermal limiting effects in optical plasmonic waveguides
  • 2017
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0022-4073 .- 1879-1352. ; 191, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied thermal effects occurring during excitation of optical plasmonic waveguide (OPW) in the form of linear chain of spherical Ag nanoparticles by pulsed laser radiation. It was shown that heating and subsequent melting of the first irradiated particle in a chain can significantly deteriorate the transmission efficiency of OPW that is the crucial and limiting factor and continuous operation of OPW requires cooling devices. This effect is caused by suppression of particle's surface plasmon resonance due to reaching the melting point temperature. We have determined optimal excitation parameters which do not significantly affect the transmission efficiency of OPW.
  •  
2.
  • Fedorov, A. S., et al. (författare)
  • A hybrid quantum-classical theory for predicting terahertz charge-transfer plasmons in metal nanoparticles on graphene
  • 2024
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 160:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal nanoparticle (NP) complexes lying on a single-layer graphene surface are studied with a developed original hybrid quantum-classical theory using the Finite Element Method (FEM) that is computationally cheap. Our theory is based on the motivated assumption that the carrier charge density in the doped graphene does not vary significantly during the plasmon oscillations. Charge transfer plasmon (CTP) frequencies, eigenvectors, quality factors, energy loss in the NPs and in graphene, and the absorption power are aspects that are theoretically studied and numerically calculated. It is shown the CTP frequencies reside in the terahertz range and can be represented as a product of two factors: the Fermi level of graphene and the geometry of the NP complex. The energy losses in the NPs are predicted to be inversely dependent on the radius R of the nanoparticle, while the loss in graphene is proportional to R and the interparticle distance. The CTP quality factors are predicted to be in the range similar to 10-100. The absorption power under CTP excitation is proportional to the scalar product of the CTP dipole moment and the external electromagnetic field. The developed theory makes it possible to simulate different properties of CTPs 3-4 orders of magnitude faster compared to the original FEM or the finite-difference time domain method, providing possibilities for predicting the plasmonic properties of very large systems for different applications.
  •  
3.
  • Gerasimov, V. S., et al. (författare)
  • Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state
  • 2016
  • Ingår i: Optics Express. - : OPTICAL SOC AMER. - 1094-4087. ; 24:23, s. 26851-26856
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electron-phonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles.
  •  
4.
  • Gerasimov, V. S., et al. (författare)
  • Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]
  • 2017
  • Ingår i: Optical Materials Express. - : OSA - The Optical Society. - 2159-3930 .- 2159-3930. ; 7:2, s. 555-568
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied light induced processes in nanocolloids and composite materials containing ordered and disordered aggregates of plasmonic nanoparticles accompanied by their strong heating. A universal comprehensive physical model that combines mechanical, electrodynamical, and thermal interactions at nanoscale has been developed as a tool for investigations. This model was used to gain deep insight on phenomena that take place in nanoparticle aggregates under high-intensity pulsed laser radiation resulting in the suppression of nanoparticle resonant properties. Verification of the model was carried out with single colloidal Au and Ag nanoparticles and their aggregates.
  •  
5.
  •  
6.
  • Sørensen, Lasse K., et al. (författare)
  • Thermal degradation of optical resonances in plasmonic nanoparticles
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 14:2, s. 433-447
  • Tidskriftsartikel (refereegranskat)abstract
    • The dependence of plasmon resonance excitations in ultrafine (3-7 nm) gold nanoparticles on heating and melting is investigated. An integrated approach is adopted, where molecular dynamics simulations of the spatial and temporal development of the atoms constituting the nanoparticles generate trajectories out of which system conformations are sampled and extracted for calculations of plasmonic excitation cross sections which then are averaged over the sample configurations for the final result. The calculations of the plasmonic excitations, which take into account the temperature- and size-dependent relaxation of the plasmons, are carried out with a newly developed Extended Discrete Interaction Model (Ex-DIM) and complemented by multilayered Mie theory. The integrated approach clearly demonstrates the conditions for suppression of the plasmons starting at temperatures well below the melting point. We have found a strong inhomogeneous dependence of the atom mobility in the particle crystal lattice increasing from the center to its surface upon the temperature growth. The plasmon resonance suppression is associated with an increase of the mobility and in the amplitude of phonon vibrations of the lattice atoms accompanied by electron-phonon scattering. This leads to an increase in the relaxation constant impeding the plasmon excitation as the major source of the suppression, while the direct contribution from the increase in the lattice constant and its chaotization at melting is found to be minor. Experimental verification of the suppression of surface plasmon resonance is demonstrated for gold nanoparticles on a quartz substrate heated up to the melting temperature and above.
  •  
7.
  • Fedorov, A. S., et al. (författare)
  • Charge-transfer plasmons with narrow conductive molecular bridges : A quantum-classical theory
  • 2019
  • Ingår i: Journal of Chemical Physics. - : AMER INST PHYSICS. - 0021-9606 .- 1089-7690. ; 151:24
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze a new type of plasmon system arising from small metal nanoparticles linked by narrow conductive molecular bridges. In contrast to the well-known charge-transfer plasmons, the bridge in these systems consists only of a narrow conductive molecule or polymer in which the electrons move in a ballistic mode, showing quantum effects. The plasmonic system is studied by an original hybrid quantum-classical model accounting for the quantum effects, with the main parameters obtained from first-principles density functional theory simulations. We have derived a general analytical expression for the modified frequency of the plasmons and have shown that its frequency lies in the near-infrared (IR) region and strongly depends on the conductivity of the molecule, on the nanoparticle-molecule interface, and on the size of the system. As illustrated, we explored the plasmons in a system consisting of two small gold nanoparticles linked by a conjugated polyacetylene molecule terminated by sulfur atoms. It is argued that applications of this novel type of plasmon may have wide ramifications in the areas of chemical sensing and IR deep tissue imaging. Published under license by AIP Publishing.
  •  
8.
  • Sørensen, Lasse K., et al. (författare)
  • Medium dependent optical response in ultra-fine plasmonic nanoparticles
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 24:39, s. 24062-24075
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the influence of media on the interaction of ultra-fine plasmonic nanoparticles (≤ 8 nm) with radiation. The important role of the surface layer of the nanoparticles, with properties that differ from the ones in the inner part, is established. Using an atomistic representation of the nanoparticle material and its interaction with light, we find a highly inhomogeneous distribution of the electric field inside and around the particles. It is predicted that with an increase in the refractive index of the ambient medium, the extension of the surface layer of atoms increases, something that also is accompanied by an enhanced red shift of the plasmon resonance band compared to large particles in which the influence of this layer and its relative volume is reduced. It is shown that the physical origin for the formation of a surface layer of atoms near the nanoparticle boundary is related to the anisotropy of the local environment of atoms in this layer which changes the conditions for the interaction of neighboring atoms with each other and with the incident radiation. It is shown that a growth of the refractive index of the ambient medium results in an increase in the local field in the dielectric cavity in which a plasmonic nanoparticle is embedded and which is accompanied by a growth of the amplitude of the plasmon resonance. We predict that in the ultra-fine regime the refractive index sensitivity shows a decreasing trend with respect to size which is opposite to that for larger particles. With the applied atomistic model this work demonstrates close relations between field distributions and properties of ultra-fine nanoparticles. 
  •  
9.
  • Utyushev, A. D., et al. (författare)
  • Engineering novel tunable optical high-Q nanoparticle array filters for a wide range of wavelengths
  • 2020
  • Ingår i: Optics Express. - : Optical Society of America. - 1094-4087. ; 28:2, s. 1426-1438
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of non-monochromatic radiation with arrays comprising plasmonic and dielectric nanoparticles has been studied using the finite-difference time-domain electrodynamics method. It is shown that LiNbO3, TiO2, GaAs, Si, and Ge all-dielectric nanoparticle arrays can provide a complete selective reflection of an incident plane wave within a narrow spectral line of collective lattice resonance with a Q-factor of 103 or larger at various spectral ranges, while plasmonic refractory TiN and chemically stable Au nanoparticle arrays provide high-Q resonances with moderate reflectivity. Arrays with fixed dimensional parameters make it possible to fine-tune the position of a selected resonant spectral line by tilting the array relative to the direction of the incident radiation. These effects provide grounds for engineering novel selective tunable optical high-Q filters in a wide range of wavelengths, from visible to middle-IR.
  •  
10.
  • Zakomirnyi, Vadim, et al. (författare)
  • Titanium nitride nanoparticles as an alternative platform for plasmonic waveguides in the visible and telecommunication wavelength ranges
  • 2018
  • Ingår i: Photonics and Nanostructures - Fundamentals and Applications. - : Elsevier. - 1569-4410. ; 30, s. 50-56
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose to utilize titanium nitride (TiN) as an alternative material for linear periodic chains (LPCs) of nanoparticles (NPs) which support surface plasmon polariton (SPP) propagation. Dispersion and transmission properties of LPCs have been examined within the framework of the dipole approximation for NPs with various shapes: spheres, prolate and oblate spheroids. It is shown that LPCs of TiN NPs support high-Q eigenmodes for an SPP attenuation that is comparable with LPCs from conventional plasmonic materials such as Au or Ag, with the advantage that the refractory properties and cheap fabrication of TiN nanostructures are more preferable in practical implementations compared to Au and Ag. We show that the SPP decay in TiN LPCs remains almost the same even at extremely high temperatures which is impossible to reach with conventional plasmonic materials. Finally, we show that the bandwidth of TiN LPCs from non-spherical particles can be tuned from the visible to the telecommunication wavelength range by switching the SPP polarization, which is an attractive feature for integrating these structures into modern photonic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy