SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ponrouch A.) "

Sökning: WFRF:(Ponrouch A.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tapia-Ruiz, Nuria, et al. (författare)
  • 2021 roadmap for sodium-ion batteries
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid-electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
  •  
2.
  • Monti, Damien, 1986, et al. (författare)
  • Microwaves as a synthetic route for preparing electrochemically active TiO2 nanoparticles
  • 2013
  • Ingår i: Journal of Materials Research. - : Springer Science and Business Media LLC. - 0884-2914 .- 2044-5326. ; 28:3, s. 340-347
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocrystalline anatase was synthesized, using both domestic and laboratory microwave ovens, from different precursors. Nanoparticulate anatase was obtained after microwave irradiation of tetra-butyl orthotitanate solution in benzyl alcohol. As-synthesized samples have orange color due to the presence of organics that were eliminated after annealing at 500 degrees C, whereas the size of small anatase nanocrystals (around 8 nm) was preserved. Other nanocrystalline anatase samples were obtained from hexafluorotitanate-organic salt ionic liquid-like precursors. In this case, use of a domestic microwave oven and very short processing times (1-3 min irradiation time) were involved. Good specific capacity values and capacity retention at high C rates for insertion/deinsertion of Li+ were recorded when testing such nanoparticles as electrode material in lithium cells. The electrochemical performances were found be strongly dependent on the phase composition, which in turn could be tuned through the synthetic procedure.
  •  
3.
  • Ponrouch, A., et al. (författare)
  • Towards high energy density sodium ion batteries through electrolyte optimization
  • 2013
  • Ingår i: Energy and Environmental Sciences. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 6:8, s. 2361-2369
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive study is reported entailing optimization of sodium ion electrolyte formulation and compatibility studies with positive and negative electrode materials. EC:PC:DMC and EC:PC:DME were found to exhibit optimum ionic conductivities and lower viscosities. Yet, hard carbon negative electrode materials tested in such electrolytes exhibit significant differences in performance, rooted in the different resistivity of the SEI, which results in too large polarization and concomitant loss of capacity at low potentials when DME is used as a co-solvent. EC0.45:PC0.45:DMC0.1 was found to be the optimum composition resulting in good rate capability and high capacity upon sustained cycling for hard carbon electrodes. Its compatibility with positive Na3V2(PO4)(2)F-3 (NVPF) electrodes was also confirmed, which led to the assembly of full Na-ion cells displaying an operation voltage of 3.65 V, very low polarisation and excellent capacity retention upon cycling with ca. 97 mA h g(-1) of NVPF after more than 120 cycles together with satisfactory coulombic efficiency (>98.5%) and very good power performance. Such values lead to energy densities comparable to those of the current state-of-the-art lithium-ion technology.
  •  
4.
  • Palacin, M. R., et al. (författare)
  • Roadmap on multivalent batteries
  • 2024
  • Ingår i: JPhys Energy. - 2515-7655. ; 6:3
  • Forskningsöversikt (refereegranskat)abstract
    • Battery technologies based in multivalent charge carriers with ideally two or three electrons transferred per ion exchanged between the electrodes have large promises in raw performance numbers, most often expressed as high energy density, and are also ideally based on raw materials that are widely abundant and less expensive. Yet, these are still globally in their infancy, with some concepts (e.g. Mg metal) being more technologically mature. The challenges to address are derived on one side from the highly polarizing nature of multivalent ions when compared to single valent concepts such as Li+ or Na+ present in Li-ion or Na-ion batteries, and on the other, from the difficulties in achieving efficient metal plating/stripping (which remains the holy grail for lithium). Nonetheless, research performed to date has given some fruits and a clearer view of the challenges ahead. These include technological topics (production of thin and ductile metal foil anodes) but also chemical aspects (electrolytes with high conductivity enabling efficient plating/stripping) or high-capacity cathodes with suitable kinetics (better inorganic hosts for intercalation of such highly polarizable multivalent ions). This roadmap provides an extensive review by experts in the different technologies, which exhibit similarities but also striking differences, of the current state of the art in 2023 and the research directions and strategies currently underway to develop multivalent batteries. The aim is to provide an opinion with respect to the current challenges, potential bottlenecks, and also emerging opportunities for their practical deployment.
  •  
5.
  • Tchitchekova, D. S., et al. (författare)
  • On the Reliability of Half-Cell Tests for Monovalent (Li+, Na+) and Divalent (Mg2+, Ca2+) Cation Based Batteries
  • 2017
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 1945-7111 .- 0013-4651. ; 164:7, s. A1384-A1392
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive study is reported entailing a comparison of Li, Na, K, Mg, and Ca based electrolytes and an investigation of the reliability of electrochemical tests using half-cells. Ionic conductivity, viscosity, and Raman spectroscopy results point to the cationsolvent interaction to follow the polarizing power of the cations, i.e. Mg2+ > Ca2+ > Li+ > Na+ > K+ and to divalent cation based electrolytes having stronger tendency to form ion pairs - lowering the cation accessibility and mobility. Both increased temperature and the use of anions with delocalized negative charge, such as TFSI, are effective in mitigating this issue. Another factor impeding the divalent cations mobility is the larger solvation shells, as compared to those of monovalent cations, that in conjunction with stronger solvent - cation interactions contribute to slower charge transfer and ultimately a large impedance of Mg and Ca electrodes. An important consequence is the non-reliability of the pseudo-reference electrodes as these present both significant potential shifts as well as unstable behaviors. Finally, experimental protocols in order to achieve consistent results when using half-cell set-ups are proposed.
  •  
6.
  • Arroyo-De Dompablo, M. Elena, et al. (författare)
  • Achievements, Challenges, and Prospects of Calcium Batteries
  • 2020
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 120:14, s. 6331-6357
  • Forskningsöversikt (refereegranskat)abstract
    • This Review flows from past attempts to develop a (rechargeable) battery technology based on Ca via crucial breakthroughs to arrive at a comprehensive discussion of the current challenges at hand. The realization of a rechargeable Ca battery technology primarily requires identification and development of suitable electrodes and electrolytes, which is why we here cover the progress starting from the fundamental electrode/electrolyte requirements, concepts, materials, and compositions employed and finally a critical analysis of the state-of-the-art, allowing us to conclude with the particular roadblocks still existing. As for crucial breakthroughs, reversible plating and stripping of calcium at the metal-anode interface was achieved only recently and for very specific electrolyte formulations. Therefore, while much of the current research aims at finding suitable cathodes to achieve proof-of-concept for a full Ca battery, the spectrum of electrolytes researched is also expanded. Compatibility of cell components is essential, and to ensure this, proper characterization is needed, which requires design of a multitude of reliable experimental setups and sometimes methodology development beyond that of other next generation battery technologies. Finally, we conclude with recommendations for future strategies to make best use of the current advances in materials science combined with computational design, electrochemistry, and battery engineering, all to propel the Ca battery technology to reality and ultimately reach its full potential for energy storage.
  •  
7.
  • Forero-Saboya, Juan, et al. (författare)
  • Cation Solvation and Physicochemical Properties of Ca Battery Electrolytes
  • 2019
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:59, s. 29524-29532
  • Tidskriftsartikel (refereegranskat)abstract
    • Divalent-cation-based batteries are being considered as potential high energy density storage devices. The optimization of electrolytes for these technologies is, however, still largely lacking. Recent demonstration of the feasibility of Ca and Mg plating and stripping in the presence of a passivation layer or an artificial interphase has paved the way for more diverse electrolyte formulations. Here, we exhaustively evaluate several Ca-based electrolytes with different salts, solvents, and concentrations, via measuring physicochemical properties and using vibrational spectroscopy. Some comparisons with Mg- and Li-based electrolytes are made to highlight the unique properties of the Ca2+ cation. The Ca-salt solubility is found to be a major issue, calling for development of new highly dissociative salts. Nonetheless, reasonable salt solubility and dissociation are achieved using bis(trifluoromethanesulfonyl)imide (TFSI), BF4, and triflate anion based electrolytes and high-permittivity solvents, such as ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (gBL), and N,N-dimethylformamide (DMF). The local Ca2+ coordination is concentration-dependent and rather complex, possibly involving bidentate coordination and participation of the nitrogen atom of DMF. The ionicity and the degree of ion-pair formation are both investigated and found to be strongly dependent on the nature of the cation, solvent donicity, and salt concentration. The large ion-ion interaction energies of the contact ion pairs, confirmed by density functional theory (DFT) calculations, are expected to play a major role in the interfacial processes, and thus, we here provide electrolyte design strategies to engineer the cation solvation and possibly improve the power performance of divalent battery systems.
  •  
8.
  • Forero-Saboya, Juan, et al. (författare)
  • Interfaces and Interphases in Ca and Mg Batteries
  • 2022
  • Ingår i: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; 9:8
  • Forskningsöversikt (refereegranskat)abstract
    • The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance. One particular problem stalling the technological development of these batteries is the low efficiency of plating/stripping at the negative electrode, which relates to several factors that have not yet been looked at systematically; the nature/concentration of the electrolyte, which determines the mass transport of electro-active species (cation complexes) toward the electrode; the possible presence of passivation layers, which may hinder ionic transport and hence limit electrodeposition; and the mechanisms behind the charge transfer leading to nucleation/growth of the metal. Different electrolytes are investigated for Mg and Ca, with the presence/absence of chlorides in the formulation playing a crucial role in the cation desolvation. From a R&D point-of-view, proper characterization alongside modeling is crucial to understand the phenomena determining the mechanisms of the plating/stripping processes. The state-of-the-art is here presented together with a short perspective on the influence of the cation solvation also on the positive electrode and finally an attempt to define guidelines for future research in the field.
  •  
9.
  • Monti, Damien, 1986, et al. (författare)
  • Towards safer sodium-ion batteries via organic solvent/ionic liquid based hybrid electrolytes
  • 2016
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 324, s. 712-721
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid electrolytes aimed at application in sodium-ion batteries (SIB) consisting of an organic solvent mixture (EC:PC) and different ionic liquids (ILs); EMImTFSI, BMImTFSI, and Pyr13TFSI, and with the NaTFSI salt providing the Na+ charge carriers have here been extensively studied. The physico-chemical and electrochemical characterisation includes ionic conductivity, viscosity, density, cation coordination and solvation, various safety measures, and electrochemical stability window (ESW). Hybrid electrolytes with 10-50% of IL content were found to have ionic conductivities on par with comparable organic solvent based electrolytes, but with highly enhanced safety properties. A systematic Raman spectroscopy study of the cation coordination and solvation before and after electrolyte safety tests by ignition suggest that IL cations and TFSI remain stable when ignited while organic solvents are consumed. Finally, the solid electrolyte interphase (SEI) formed when using hybrid electrolytes has both better mechanical and electrochemical stability than the SEI derived from pure IL based electrolytes. For a half-cell with a hard carbon (HC) electrode and a hybrid electrolyte with a composition of 0.8 m NaTFSI in EC0.45:PC0.45:Pyr13TFSI0.10 encouraging results were obtained for IL based electrolytes - ca. 182 mAhg-1 at C/10 over 40 cycles.
  •  
10.
  • Monti, Damien, 1986, et al. (författare)
  • Towards standard electrolytes for sodium-ion batteries: physical properties, ion solvation and ion-pairing in alkyl carbonate solvents
  • 2020
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 22:39, s. 22768-22777
  • Tidskriftsartikel (refereegranskat)abstract
    • The currently emerging sodium-ion battery technology is in need of an optimized standard organic solvent electrolyte based on solid and directly comparable data. With this aim we have made a systematic study of "simple"electrolyte systems consisting of two sodium salts (NaTFSI and NaPF6) dissolved in three different alkyl carbonate solvents (EC, PC, DMC) within a wide range of salt concentrations and investigated: (i) their more macroscopic physico-chemical properties such as ionic conductivity, viscosity, thermal stability, and (ii) the molecular level properties such as ion-pairing and solvation. From this all electrolytes were found to have useful thermal operational windows and electrochemical stability windows, allowing for large scale energy storage technologies focused on load levelling or (to a less extent) electric vehicles, and ionic conductivities on par with analogous lithium-ion battery electrolytes, giving promise to also be power performant. Furthermore, at the molecular level the NaPF6-based electrolytes are more dissociated than the NaTFSI-based ones because of the higher ionic association strength of TFSI compared to PF6- while two different conformers of DMC participate in the Na+ first solvation shells-a Na+ affected conformational equilibrium and induced polarity of DMC. The non-negligible presence of DMC in the Na+ first solvation shells increases as a function of salt concentration. Overall, these results should both have a general impact on the design of more performant Na-conducting electrolytes and provide useful insight on the very details of the importance of DMC conformers in any cation solvation studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy