SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pontiller Benjamin) "

Sökning: WFRF:(Pontiller Benjamin)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amnebrink, Dennis, et al. (författare)
  • Genome-resolved analysis reveals transcriptional transitions across seasons in Baltic Sea prokaryotes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Microbial communities in surface waters of temperate seas are exposed to recurring annual seasonal variation in temperature and nutrient concentrations. To what extent bacterioplankton populations in natural communities alter their functional repertoire as a result of seasonal succession has not been thoroughly investigated. Here we use metatranscriptomics and leverage a comprehensive catalogue of metagenome-assembled genomes (MAGs) to follow gene expression in individual populations over a two-year time period at an offshore station in the Baltic Sea. We show that the collective expression of the MAGs changed in a consistent manner across seasons in the two years, forming clusters representing the four seasons, and that more than 80% of these displayed a recurring seasonal pattern. Furthermore, we found that the changes in expression could partly be explained by modulation of expression within the prokaryotic populations, since intra-population expression patterns also changed with season. Taken together, our results demonstrate how natural microbial populations alter their expression on the gene level, and how these changes drive large scale changes on both population and community level. This work aims to broaden the understanding of how microbes respond and adapt to their environment by preferentially altering their expressed genetic repertoire, and how microbial community dynamics can be explained through the gene expression of various populations constituting the community. 
  •  
2.
  • Amnebrink, Dennis, et al. (författare)
  • Seasonal dynamics and life cycle strategies of the cyanobacterium Aphanizomenon in the Baltic proper
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Aphanizomenon, together with Dolichospermum and Nodularia, constitute the major genera of bloom forming filamentous nitrogen fixing cyanobacteria in the Baltic Sea. Like the other genera, Aphanizomenon displays summer blooms that are highly variable in magnitude and duration but unlike the others it is considered a holoplanktonic species. Still, the molecular mechanisms enabling Aphanizomenon year-round presence in surface waters are currently unknown. Here we combine analysis of Aphanizomenon population dynamics at the Linnaeus Microbial Observatory (LMO) station in the Baltic Proper over nine years (2011-2019) with associated gene expression patterns during 2016-2017 to identify annual abundance, and metabolic and life cycle strategies. Aphanizomenon biomass showed large annual variability and a consistent biovolume peak in summer, with bloom intensity ranging from 78-1334 mm3 m-3. 16S rRNA gene amplicon sequence data showed that one Aphanizomenon amplicon sequence variant (ASV) dominated, and its relative abundance correlated with biovolume measurements. Metatranscriptomic reads that mapped to an Aphanizomenon metagenome- assembled genome (MAG) revealed annually repeating gene expression patterns, resulting in distinct gene expression profiles during different meteorological seasons. Genes encoding proteins involved in several important functional classes, e.g. carbon fixation, photosynthesis, and associated photopigments showed seasonal variation, but were detected year round. Other genes, particularly those involved in nitrogen fixation, were highly expressed in summer, while absent in winter. Vitamin metabolism and phosphorus scavenging genes were preferentially expressed during the colder periods of the annual cycle. Together, these data show that Aphanizomenon regulates the molecular machinery on the seasonal scale, providing context to the observed dynamics of Aphanizomenon in the Baltic Proper and a foundation for understanding the ecology of these cyanobacteria. 
  •  
3.
  •  
4.
  • Delgadillo-Nuno, Erick, et al. (författare)
  • Coastal upwelling systems as dynamic mosaics of bacterioplankton functional specialization
  • 2024
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal upwelling areas are extraordinarily productive environments where prokaryotic communities, the principal remineralizers of dissolved organic matter (DOM), rapidly respond to phytoplankton bloom and decay dynamics. Nevertheless, the extent of variability of key microbial functions in such dynamic waters remains largely unconstrained. Our metatranscriptomics analyses of 162 marker genes encoding ecologically relevant prokaryotic functions showed distinct spatial-temporal patterns in the NW Iberian Peninsula upwelling area. Short-term (daily) changes in specific bacterial functions associated with changes in biotic and abiotic factors were superimposed on seasonal variability. Taxonomic and functional specialization of prokaryotic communities, based mostly on different resource acquisition strategies, was observed. Our results uncovered the potential influence of prokaryotic functioning on phytoplankton bloom composition and development (e.g., Cellvibrionales and Flavobacteriales increased relative gene expression related to vitamin B12 and siderophore metabolisms during Chaetoceros and Dinophyceae summer blooms). Notably, bacterial adjustments to C- or N-limitation and DMSP availability during summer phytoplankton blooms and different spatial-temporal patterns of variability in the expression of genes with different phosphate affinity indicated a complex role of resource availability in structuring bacterial communities in this upwelling system. Also, a crucial role of Cellvibrionales in the degradation of DOM (carbohydrate metabolism, TCA cycle, proteorhodopsin, ammonium, and phosphate uptake genes) during the summer phytoplankton bloom was found. Overall, this dataset revealed an intertwined mosaic of microbial interactions and nutrient utilization patterns along a spatial-temporal gradient that needs to be considered if we aim to understand the biogeochemical processes in some of the most productive ecosystems in the world ' s oceans.
  •  
5.
  • Frank, Alexander H., et al. (författare)
  • Erythromycin and GC7 fail as domain-specific inhibitors for bacterial and archaeal activity in the open ocean
  • 2016
  • Ingår i: Aquatic Microbial Ecology. - : Inter-Research Science Center. - 0948-3055 .- 1616-1564. ; 77:2, s. 99-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Domain-specific metabolic inhibitors are currently used to differentiate archaeal from bacterial activity. However, studies testing the specificity of these inhibitors are sparse or are based on cultured strains. We determined the inhibition specificity of erythromycin (EMY) and N1-guanyl-1,7-diaminoheptane (GC7) on bacterial and archaeal communities in the North Atlantic. EMY and GC7 are assumed to inhibit bacterial and archaeal activity, respectively. Heterotrophic prokaryotic activity was estimated via H-3-leucine incorporation on the cell-specific level using catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography (MICRO-CARD-FISH). In the water masses studied, the contribution of Thaumarchaeota to total picoplankton abundance ranged from 5 to 24% while Euryarchaeota contributed 2 to 6%; the relative abundance of Bacteria ranged from 29 to 48%. The addition of EMY and GC7 reduced the bulk leucine incorporation by similar to 77% and similar to 41%, respectively. Evaluation of the inhibition efficiency of EMY on a cell-specific level showed no difference between Archaea (76.0 +/- 14.2% [SD]) and Bacteria (78.2 +/- 9.5%). Similarly, the reduction of substrate uptake in GC7-treated samples was similar in Archaea (59.9 +/- 24%) and Bacteria (47.2 +/- 9.6%). Taken together, our results suggest that in complex open-ocean prokaryotic communities neither EMY nor GC7 is efficient as a domain-specific inhibitor.
  •  
6.
  • Fridolfsson, Emil, et al. (författare)
  • Multiyear analysis uncovers coordinated seasonality in stocks and composition of the planktonic food web in the Baltic Sea proper
  • 2023
  • Ingår i: Scientific Reports. - London : Springer Nature. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The planktonic realm from bacteria to zooplankton provides the baseline for pelagic aquatic food webs. However, multiple trophic levels are seldomly included in time series studies, hampering a holistic understanding of the influence of seasonal dynamics and species interactions on food web structure and biogeochemical cycles. Here, we investigated plankton community composition, focusing on bacterio-, phyto- and large mesozooplankton, and how biotic and abiotic factors correlate at the Linnaeus Microbial Observatory (LMO) station in the Baltic Sea from 2011 to 2018. Plankton communities structures showed pronounced dynamic shifts with recurring patterns. Summarizing the parts of the planktonic microbial food web studied here to total carbon, a picture emerges with phytoplankton consistently contributing > 39% while bacterio- and large mesozooplankton contributed ~ 30% and ~ 7%, respectively, during summer. Cyanophyceae, Actinobacteria, Bacteroidetes, and Proteobacteria were important groups among the prokaryotes. Importantly, Dinophyceae, and not Bacillariophyceae, dominated the autotrophic spring bloom whereas Litostomatea (ciliates) and Appendicularia contributed significantly to the consumer entities together with the more traditionally observed mesozooplankton, Copepoda and Cladocera. Our findings of seasonality in both plankton composition and carbon stocks emphasize the importance of time series analyses of food web structure for characterizing the regulation of biogeochemical cycles and appropriately constraining ecosystem models. 
  •  
7.
  • Hötzinger, Matthias, et al. (författare)
  • Dynamics of Baltic Sea phages driven by environmental changes
  • 2022
  • Ingår i: Environmental Microbiology. - : John Wiley & Sons. - 1462-2912 .- 1462-2920. ; 23:8, s. 4576-4594
  • Tidskriftsartikel (refereegranskat)abstract
    • Phage predation constitutes a major mortality factor for bacteria in aquatic ecosystems, and thus, directly impacts nutrient cycling and microbial community dynamics. Yet, the population dynamics of specific phages across time scales from days to months remain largely unexplored, which limits our understanding of their influence on microbial succession. To investigate temporal changes in diversity and abundance of phages infecting particular host strains, we isolated 121 phage strains that infected three bacterial hosts during a Baltic Sea mesocosm experiment. Genome analysis revealed a novel Flavobacterium phage genus harboring gene sets putatively coding for synthesis of modified nucleotides and glycosylation of bacterial cell surface components. Another novel phage genus revealed a microdiversity of phage species that was largely maintained during the experiment and across mesocosms amended with different nutrients. In contrast to the newly described Flavobacterium phages, phages isolated from a Rheinheimera strain were highly similar to previously isolated genotypes, pointing to genomic consistency in this population. In the mesocosm experiment, the investigated phages were mainly detected after a phytoplankton bloom peak. This concurred with recurrent detection of the phages in the Baltic Proper during summer months, suggesting an influence on the succession of heterotrophic bacteria associated with phytoplankton blooms.
  •  
8.
  • Joglar, Vanessa, et al. (författare)
  • Cobalamin and microbial plankton dynamics along a coastal to offshore transect in the Eastern North Atlantic Ocean
  • 2021
  • Ingår i: Environmental Microbiology. - : John Wiley & Sons. - 1462-2912 .- 1462-2920. ; 23:3, s. 1559-1583
  • Tidskriftsartikel (refereegranskat)abstract
    • Cobalamin (B12) is an essential cofactor that is exclusively synthesized by some prokaryotes while many prokaryotes and eukaryotes require an external supply of B12. The spatial and temporal availability of B12 is poorly understood in marine ecosystems. Field measurements of B12 along with a large set of ancillary biotic and abiotic factors were obtained during three oceanographic cruises in the NW Iberian Peninsula, covering different spatial and temporal scales. B12 concentrations were remarkably low (<1.5 pM) in all samples, being significantly higher at the subsurface Eastern North Atlantic Central Water than at shallower depths, suggesting that B12 supply in this water mass is greater than demand. Multiple regression models excluded B12 concentration as predictive variable for phytoplankton biomass or production, regardless of the presence of B12-requiring algae. Prokaryote production was the best predictor for primary production, and eukaryote community composition was better correlated with prokaryote community composition than with nutritional resources, suggesting that biotic interactions play a significant role in regulating microbial communities. Interestingly, co-occurrence network analyses based on 16S and 18S rRNA sequences allowed the identification of significant associations between potential B12 producers and consumers (e.g. Thaumarchaeota and Dynophyceae, or Amylibacter and Ostreococcus respectively), which can now be investigated using model systems in the laboratory.
  •  
9.
  • Joglar, Vanessa, et al. (författare)
  • Microbial Plankton Community Structure and Function Responses to Vitamin B-12 and B-1 Amendments in an Upwelling System
  • 2021
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 87:22
  • Tidskriftsartikel (refereegranskat)abstract
    • B vitamins are essential cofactors for practically all living organisms on Earth and are produced by a selection of microorganisms. An imbalance between high demand and limited production, in concert with abiotic processes, may explain the low availability of these vitamins in marine systems. Natural microbial communities from surface shelf water in the productive area off northwestern Spain were enclosed in mesocosms in winter, spring, and summer 2016. In order to explore the impact of B-vitamin availability on microbial community composition (16S and 18S rRNA gene sequence analysis) and bacterial function (metatranscriptomics analysis) in different seasons, enrichment experiments were conducted with seawater from the mesocosms. Our findings revealed that significant increases in phytoplankton or prokaryote biomass associated with vitamin B-12 and/or B-1 amendments were not accompanied by significant changes in community composition, suggesting that most of the microbial taxa benefited from the external B-vitamin supply. Metatranscriptome analysis suggested that many bacteria were potential consumers of vitamins B-12 and B-1, although the relative abundance of reads related to synthesis was ca. 3.6-fold higher than that related to uptake. Alteromonadales and Oceanospirillales accounted for important portions of vitamin B-1 and B-12 synthesis gene transcription, despite accounting for only minor portions of the bacterial community. Flavobacteriales appeared to be involved mostly in vitamin B-12 and B-1 uptake, and Pelagibacterales expressed genes involved in vitamin B-1 uptake. Interestingly, the relative expression of vitamin B-12 and B-1 synthesis genes among bacteria strongly increased upon inorganic nutrient amendment. Collectively, these findings suggest that upwelling events intermittently occurring during spring and summer in productive ecosystems may ensure an adequate production of these cofactors to sustain high levels of phytoplankton growth and biomass. IMPORTANCE B vitamins are essential growth factors for practically all living organisms on Earth that are produced by a selection of microorganisms. An imbalance between high demand and limited production may explain the low concentration of these compounds in marine systems. In order to explore the impact of B-vitamin availability on bacteria and algae in the coastal waters off northwestern Spain, six experiments were conducted with natural surface water enclosed in winter, spring, and summer. Our findings revealed that increases in phytoplankton or bacterial growth associated with B-12 and/or B-1 amendments were not accompanied by significant changes in community composition, suggesting that most microorganisms benefited from the B-vitamin supply. Our analyses confirmed the role of many bacteria as consumers of vitamins B-12 and B-1, although the relative abundance of genes related to synthesis was ca. 3.6-fold higher than that related to uptake. Interestingly, prokaryote expression of B-12 and B-1 synthesis genes strongly increased when inorganic nutrients were added. Collectively, these findings suggest that upwelling of cold and nutrient-rich waters occurring during spring and summer in this coastal area may ensure an adequate production of B vitamins to sustain high levels of algae growth and biomass.
  •  
10.
  • Karlsson, Christofer M. G., et al. (författare)
  • Metatranscriptomic analysis uncovers divergent responses of Baltic Sea bacteria to forest and agriculture river loadings
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change is predicted to induce substantial changes in precipitation patterns across the globe. In Northern Europe, precipitation is expected to increase more than the global average (particularly in northern Scandinavia), causing increased river runoff. The Baltic Sea is one of the largest brackish environments on earth with a catchment area that spans 14 countries, encompassing primarily forested areas and agricultural landscapes. Despite the acknowledged role of marine bacteria in nutrient cycling, there is a lack of knowledge in their metabolic responses to inorganic and organic nutrient loading from riverine runoff. We investigated the bacterial growth and gene expression responses in a mesocosm experiment in which river water from boreal forest- (enriched in humic substances) or agriculture- influenced catchment areas were added to Baltic Sea Proper water. The riverine nutrient input triggered extensive phytoplankton blooms and bacterial growth, most notably in the agriculture river treatment. Interestingly, bacterial gene expression analysis (metatranscriptomics) showed similar responses to agriculture and humic river inputs at the start of the experiment (before the phytoplankton bloom), but expression patterns diverged significantly upon bloom senescence.Notably, transcripts associated with phosphate metabolism were significantly enriched , whereas transcripts related to nitrogen metabolism were significantly lower in the agriculture river treatment compared to the boreal forest river treatment. The opposite pattern was observed in the boreal forest river water treatment. Overall, our results showed that interactions between river nutrient loading and phytoplankton organic matter are important in regulating bacterial activities and responses at the molecular level. This suggests that bacterial transformations of organic matter and nutrient cycling in coastal waters and estuarine environments are sensitive to changes in precipitation patterns in a catchment area-dependent manner.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (11)
annan publikation (5)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Pinhassi, Jarone (15)
Lundin, Daniel, 1965 ... (14)
Pontiller, Benjamin, ... (10)
Pontiller, Benjamin (7)
Bunse, Carina (6)
Martínez-García, San ... (6)
visa fler...
Legrand, Catherine, ... (5)
Farnelid, Hanna, 198 ... (4)
Osbeck, Christofer M ... (4)
Teira, Eva (4)
Joglar, Vanessa (4)
Fernandez, Emilio (4)
Nilsson, Emelie (3)
Kisand, Veljo (3)
Amnebrink, Dennis (3)
Middelboe, Mathias (3)
Andersson, Anders (2)
Andersson, Anders F. (2)
Gonzalez, Jose M. (2)
Lindehoff, Elin (2)
Sivonen, Kaarina (2)
Alneberg, Johannes (2)
Riemann, Lasse (2)
Karlsson, Christofer ... (2)
Baltar, Federico, 19 ... (2)
Israelsson, Stina (2)
Fridolfsson, Emil (2)
Lindh, Markus V. (1)
Laber, Christien P. (1)
Lindh, Markus V., 19 ... (1)
Pedros-Alio, Carlos (1)
González, José (1)
Hylander, Samuel (1)
Legrand, Catherine, ... (1)
Herndl, Gerhard J. (1)
Reinthaler, Thomas (1)
Bergström, Kristofer (1)
Legrand, Catherine, ... (1)
Sjöstedt, Johanna, 1 ... (1)
Holmfeldt, Karin, 19 ... (1)
Muthusamy, Sarala De ... (1)
Hutinet, Geoffrey (1)
Delgadillo-Nuno, Eri ... (1)
Frank, Alexander H. (1)
Hötzinger, Matthias (1)
Arabi, Rahaf (1)
Bayfield, Oliver W. (1)
Traving, Sachia (1)
Alvarez-Salgado, Xos ... (1)
Gago-Martinez, Ana (1)
visa färre...
Lärosäte
Linnéuniversitetet (17)
Umeå universitet (6)
Högskolan i Halmstad (2)
Göteborgs universitet (1)
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy