SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pontzen Andrew) "

Sökning: WFRF:(Pontzen Andrew)

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agertz, Oscar, et al. (författare)
  • EDGE : The mass-metallicity relation as a critical test of galaxy formation physics
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 491:2, s. 1656-1672
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the 'Engineering Dwarfs at Galaxy Formation's Edge' (EDGE) project to study the cosmological formation and evolution of the smallest galaxies in the Universe. In this first paper, we explore the effects of resolution and sub-grid physics on a single low-mass halo (Mhalo = 109M⊙), simulated to redshift z = 0 at amass and spatial resolution of ∼ 20 M⊙ and ∼3 pc. We consider different star formation prescriptions, supernova feedback strengths, and on-the-fly radiative transfer (RT). We show that RT changes the mode of galactic self-regulation at this halo mass, suppressing star formation by causing the interstellar and circumgalactic gas to remain predominantly warm (∼104K) even before cosmic reionization. By contrast, without RT, star formation regulation occurs only through starbursts and their associated vigorous galactic outflows. In spite of this difference, the entire simulation suite (with the exception of models without any feedback) matches observed dwarf galaxy sizes, velocity dispersions, V-band magnitudes, and dynamical mass-to-light-ratios. This is because such structural scaling relations are predominantly set by the host dark matter halo, with the remaining model-to-model variation being smaller than the observational scatter. We find that only the stellar mass-metallicity relation differentiates the galaxy formation models. Explosive feedback ejects more metals from the dwarf, leading to a lower metallicity at a fixed stellar mass. We conclude that the stellar mass-metallicity relation of the very smallest galaxies provides a unique constraint on galaxy formation physics.
  •  
2.
  • Anderson, Lauren, et al. (författare)
  • Cosmological Hydrodynamic Simulations with Suppressed Variance in the Ly alpha Forest Power Spectrum
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 871:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We test a method to reduce unwanted sample variance when predicting Ly alpha forest power spectra from cosmological hydrodynamical simulations. Sample variance arises due to sparse sampling of modes on large scales and propagates to small scales through nonlinear gravitational evolution. To tackle this, we generate initial conditions in which the density perturbation amplitudes are fixed to the ensemble average power spectrum-and are generated in pairs with exactly opposite phases. We run 50 such simulations (25 pairs) and compare their performance against 50 standard simulations by measuring the Ly alpha 1D and 3D power spectra at redshifts z = 2, 3, and 4. Both ensembles use periodic boxes of 40 h(-1)Mpc containing 512(3) particles each of dark matter and gas. As a typical example of improvement, for wavenumbers k = 0.25 hMpc(-1) at z = 3, we find estimates of the 1D and 3D power spectra converge 34 and 12 times faster in a paired-fixed ensemble compared with a standard ensemble. We conclude that, by reducing the computational time required to achieve fixed accuracy on predicted power spectra, the method frees up resources for exploration of varying thermal and cosmological parameters-ultimately allowing the improved precision and accuracy of statistical inference.
  •  
3.
  • Bird, Simeon, et al. (författare)
  • An emulator for the Lyman-alpha forest
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present methods for interpolating between the 1-D flux power spectrum of the Lyman-alpha forest, as output by cosmological hydrodynamic simulations. Interpolation is necessary for cosmological parameter estimation due to the limited number of simulations possible. We construct an emulator for the Lyman-alpha forest flux power spectrum from 21 small simulations using Latin hypercube sampling and Gaussian process interpolation. We show that this emulator has a typical accuracy of 1 : 5% and a worst-case accuracy of 4%, which compares well to the current statistical error of 3-5% at z < 3 from BOSS DR9. We compare to the previous state of the art, quadratic polynomial interpolation. The Latin hypercube samples the entire volume of parameter space, while quadratic polynomial emulation samples only lower-dimensional subspaces. The Gaussian process provides an estimate of the emulation error and we show using test simulations that this estimate is reasonable. We construct a likelihood function and use it to show that the posterior constraints generated using the emulator are unbiased. We show that our Gaussian process emulator has lower emulation error than quadratic polynomial interpolation and thus produces tighter posterior confidence intervals, which will be essential for future Lyman-alpha surveys such as DESI.
  •  
4.
  • Braden, Jonathan, et al. (författare)
  • Mass renormalization in lattice simulations of false vacuum decay
  • 2023
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 107:8
  • Tidskriftsartikel (refereegranskat)abstract
    • False vacuum decay, a quantum mechanical first-order phase transition in scalar field theories, is an important phenomenon in early Universe cosmology. Recently, real-time semiclassical techniques based on ensembles of lattice simulations were applied to the problem of false vacuum decay. In this context, or any other lattice simulation, the effective potential experienced by long-wavelength modes is not the same as the bare potential. To make quantitative predictions using the real-time semiclassical techniques, it is therefore necessary to understand the redefinition of model parameters and the corresponding deformation of the vacuum state, as well as stochastic contributions that require modeling of unresolved subgrid modes. In this work, we focus on the former corrections and compute the expected modification of the true and false vacuum effective mass, which manifests as a modified dispersion relationship for linear fluctuations about the vacuum. We compare these theoretical predictions to numerical simulations and find excellent agreement. Motivated by this, we use the effective masses to fix the shape of a parametrized effective potential, and explore the modeling uncertainty associated with nonlinear corrections. We compute the decay rates in both the Euclidean and real-time formalisms, finding qualitative agreement in the dependence on the UV cutoff. These calculations further demonstrate that a quantitative understanding of the rates requires additional corrections.
  •  
5.
  • Braden, Jonathan, et al. (författare)
  • New Semiclassical Picture of Vacuum Decay
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 123:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce a new picture of vacuum decay which, in contrast to existing semiclassical techniques, provides a real-time description and does not rely on classically forbidden tunneling paths. Using lattice simulations, we observe vacuum decay via bubble formation by generating realizations of vacuum fluctuations and evolving with the classical equations of motion. The decay rate obtained from an ensemble of simulations is in excellent agreement with existing techniques. Future applications include bubble correlation functions, fast decay rates, and decay of nonvacuum states.
  •  
6.
  • Braden, Jonathan, et al. (författare)
  • Nonlinear dynamics of the cold atom analog false vacuum
  • 2019
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :10
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the nonlinear dynamics of cold atom systems that can in principle serve as quantum simulators of false vacuum decay. The analog false vacuum manifests as a metastable vacuum state for the relative phase in a two-species Bose-Einstein condensate (BEC), induced by a driven periodic coupling between the two species. In the appropriate low energy limit, the evolution of the relative phase is approximately governed by a relativistic wave equation exhibiting true and false vacuum configurations. In previous work, a linear stability analysis identified exponentially growing short-wavelength modes driven by the time-dependent coupling. These modes threaten to destabilize the analog false vacuum. Here, we employ numerical simulations of the coupled Gross-Pitaevski equations (GPEs) to determine the non-linear evolution of these linearly unstable modes. We find that unless a physical mechanism modifies the GPE on short length scales, the analog false vacuum is indeed destabilized. We briefly discuss various physically expected corrections to the GPEs that may act to remove the exponentially unstable modes. To investigate the resulting dynamics in cases where such a removal mechanism exists, we implement a hard UV cutoff that excludes the unstable modes as a simple model for these corrections. We use this to study the range of phenomena arising from such a system. In particular, we show that by modulating the strength of the time-dependent coupling, it is possible to observe the crossover between a second and first order phase transition out of the false vacuum.
  •  
7.
  • Cadiou, Corentin, et al. (författare)
  • Angular momentum evolution can be predicted from cosmological initial conditions
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:4, s. 5480-5486
  • Tidskriftsartikel (refereegranskat)abstract
    • The angular momentum of dark matter haloes controls their spin magnitude and orientation, which in turn influences the galaxies therein. However, the process by which dark matter haloes acquire angular momentum is not fully understood; in particular, it is unclear whether angular momentum growth is stochastic. To address this question, we extend the genetic modification technique to allow control over the angular momentum of any region in the initial conditions. Using this technique to produce a sequence of modified simulations, we can then investigate whether changes to the angular momentum of a specified region in the evolved universe can be accurately predicted from changes in the initial conditions alone. We find that the angular momentum in regions with modified initial conditions can be predicted between 2 and 4 times more accurately than expected from applying tidal torque theory. This result is masked when analysing the angular momentum of haloes, because particles in the outskirts of haloes dominate the angular momentum budget. We conclude that the angular momentum of Lagrangian patches is highly predictable from the initial conditions, with apparent chaotic behaviour being driven by stochastic changes to the arbitrary boundary defining the halo.
  •  
8.
  • Cadiou, Corentin, et al. (författare)
  • Stellar angular momentum can be controlled from cosmological initial conditions
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 517:3, s. 3459-3468
  • Tidskriftsartikel (refereegranskat)abstract
    • The angular momentum of galaxies controls the kinematics of their stars, which in turn drives observable quantities such as the apparent radius, the bulge fraction, and the alignment with other nearby structures. To show how angular momentum of galaxies is determined, we build high (35 pc) resolution numerical experiments in which we increase or decrease the angular momentum of the Lagrangian patches in the early universe. We perform cosmological zoom-in simulations of three galaxies over their histories from z = 200 to z = 2, each with five different choices for the angular momentum (15 simulations in total). Our results show that altering early universe angular momentum changes the timing and orbital parameters of mergers, which in turn changes the total stellar angular momentum within a galaxy’s virial radius in a predictable manner. Of our three galaxies, one has no large satellite at z = 2; in this case, the specific angular momentum is concentrated in the central galaxy. Our changes to the initial conditions result in its stellar angular momentum changing over 0.7 dex (from 61 to 320 kpc km s−1⁠) at z = 2. This causes its effective radius to grow by 40 per cent, its v/σ parameter to grow by a factor of 2.6, and its bulge fraction to decrease from 0.72 to 0.57. This proof of concept illustrates how causal studies can contribute to a better understanding of the origin of galaxy scaling relations and intrinsic alignments.
  •  
9.
  • Cadiou, Corentin, et al. (författare)
  • The causal effect of environment on halo mass and concentration
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:1, s. 1189-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the impact of environment on the formation and evolution of dark matter haloes and galaxies is a crucial open problem. Studying statistical correlations in large simulated populations sheds some light on these impacts, but the causal effect of an environment on individual objects is harder to pinpoint. Addressing this, we present a new method for resimulating a single dark matter halo in multiple large-scale environments. In the initial conditions, we 'splice' (i.e. insert) the Lagrangian region of a halo into different Gaussian random fields, while enforcing consistency with the statistical properties of Lambda cold dark matter. Applying this technique, we demonstrate that the mass of haloes is primarily determined by the density structure inside their Lagrangian patches, while the haloes' concentration is more strongly affected by environment. The splicing approach will also allow us to study, for example, the impact of the cosmic web on accretion processes and galaxy quenching.
  •  
10.
  • Goater, Alex, et al. (författare)
  • EDGE : The direct link between mass growth history and the extended stellar haloes of the faintest dwarf galaxies
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711. ; 527:2, s. 2403-2412
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-f aint dw arf galaxies (UFDs) are commonly found in close proximity to the Milky Way and other massive spiral galaxies. As such, their projected stellar ellipticity and extended light distributions are often thought to owe to tidal forces. In this paper, we study the projected stellar ellipticities and faint stellar outskirts of tidally isolated ultra-faints drawn from the 'Engineering Dwarfs at Galaxy Formation's Edge' (EDGE) cosmological simulation suite. Despite their tidal isolation, our simulated dwarfs exhibit a wide range of projected ellipticities (0.03 < ϵ < 0.85), with many possessing anisotropic extended stellar haloes that mimic tidal tails, but owe instead to late-time accretion of lower mass companions. Furthermore, we find a strong causal relationship between ellipticity and formation time of a UFD, which is robust to a wide variation in the feedback model. We show that the distribution of projected ellipticities in our suite of simulated EDGE dwarfs matches well with a sample of 19 Local Group dwarf galaxies and a sample of 11 isolated dwarf galaxies. Given ellipticity in EDGE arises from an ex-situ accretion origin, the agreement in shape indicates the ellipticities of some observed dwarfs may also originate from a non-tidal scenario. The orbital parameters of these observed dwarfs further support that they are not currently tidally disrupting. If the baryonic content in these galaxies is still tidally intact, then the same may be true for their dark matter content, making these galaxies in our Local Group pristine laboratories for testing dark matter and galaxy formation models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy