SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Porath Jerker) "

Sökning: WFRF:(Porath Jerker)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chaga, Grigoriy, et al. (författare)
  • Engineering of a metal coordinating site into human glutathione transferase M1-1 based on immobilized metal ion affinity chromatography of homologous rat enzymes
  • 1994
  • Ingår i: Protein Engineering. - : Oxford University Press (OUP). - 0269-2139 .- 1460-213X. ; 7:9, s. 1115-1119
  • Tidskriftsartikel (refereegranskat)abstract
    • Rat glutathione transferase (GST) 3-3 binds to Ni(II)-iminodiacetic acid (IDA)-agarose, whereas other GSTs that are abundant in rat liver do not bind to this immobilized metal ion affinity chromatography (IMAC) adsorbent. Rat GST 3-3 contains two superficially located amino acid residues, His84 and His85, that are suitably positioned for coordination to Ni(II)-IDA-agarose. This particular structural motif is lacking in GSTs that do not bind to the IMAC matrix. Creation of an equivalent His-His structure in the homologous human GST M1-1 by protein engineering afforded a mutant enzyme that displays affinity for Ni(II)-IDA-agarose, in contrast to the wild-type GST M1-1. The results identify a distinct site that is operational in IMAC and suggest an approach to the rational design of novel integral metal coordination sites in proteins.
  •  
2.
  • Gonzalez-Ortega, Omar, et al. (författare)
  • Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part I : Polymer permeation-immobilized metal ion affinity chromatography separation adsorbents with polyethylene glycol and immobilized metal ions
  • 2012
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673 .- 1873-3778. ; 1227, s. 115-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the many efforts to develop efficient protein purification techniques, the isolation of peptides and small proteins on a larger than analytical scale remains a significant challenge. Recovery of small biomolecules from diluted complex biological mixtures, such as human serum, employing porous adsorbents is a difficult task mainly due to the presence of concentrated large biomolecules that can add undesired effects in the system such as blocking of adsorbent pores, impairing diffusion of small molecules, or competition for adsorption sites. Adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide matrix, have been developed and explored in this work to overcome such effects and to preferentially adsorb small molecules while rejecting large ones. In the first part of this work, adsorption studies were performed with small peptides and proteins from synthetic mixtures using controlled access polymer permeation adsorption (CAPPA) media created by effectively grafting PEG on an immobilized metal affinity chromatography (IMAC) agarose resin, where chelating agents and immobilized metal ions were used as the primary affinity binding sites. Synthetic mixtures consisted of bovine serum albumin (BSA) with small proteins, peptides, amino acids (such as histidine or Val(4)-Angiotensin III), and small molecules-spiked human serum. The synthesized hybrid adsorbent consisted of agarose beads modified with iminodiacetic (IDA) groups, loaded with immobilized Cu(II) ions, and PEG. These CAPPA media with grafted PEG on the interior and exterior surfaces of the agarose matrix were effective in rejecting high molecular weight proteins. Different PEG grafting densities and PEG of different molecular weight were tested to determine their effect in rejecting and controlling adsorbent permeation properties. Low grafting density of high molecular weight PEG was found to be as effective as high grafting density of low molecular weight PEG in the rejecting properties of the semi-permeable synthesized media. (C) 2012 Elsevier B.V. All rights reserved.
  •  
3.
  • Gonzalez-Ortega, Omar, et al. (författare)
  • Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part II : Polymer permeation-ion exchange separation adsorbents with polyethylene glycol and strong anion exchange groups
  • 2012
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673 .- 1873-3778. ; 1227, s. 126-137
  • Tidskriftsartikel (refereegranskat)abstract
    • In chromatographic separations, the most general problem in small biomolecule isolation and purification is that such biomolecules are usually found in extremely low concentrations together with high concentrations of large molecular weight proteins. In the first part of this work, adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide Immobilized Metal Affinity Chromatography (IMAC) matrix was synthesized and used to develop chromatographic adsorbents that preferentially adsorb and separate low molecular weight biomolecules while rejecting large molecular weight proteins. In this second part, we expand the concept of controlled access polymer permeation adsorption (CAPPA) media by grafting polyethylene glycol (PEG) on a high capacity polysaccharide ion exchange (IEX) chromatographic resin where PEG acts as a semi-permeable barrier that preferentially allows the permeation of small molecules while rejecting large ones. The IEX resin bearing quaternary ammonium groups binds permeated biomolecules according to their ion exchange affinity while excluding large biomolecules by the PEG barrier and thus cannot compete for the binding sites. This new AdSEC media was used to study the retention of peptides and proteins covering a wide range of molecular weights from to 150 kDa. The effect of protein molecular weight towards retention by ion exchange was performed using pure protein solutions. Recovery of insulin from insulin-spiked human serum and insulin-spiked human urine was evaluated under polymer controlled permeation conditions. The CAPPA media consisted of agarose beads modified with amino-PEG-methoxy and with trimethyl ammonium groups, having chloride capacities between 20 and 40 mu eq/mL and were effective in rejecting high molecular weight proteins while allowing the preferential adsorption of small proteins and peptides. 
  •  
4.
  • Muszynska, Grazyna, et al. (författare)
  • Model studies on iron (III) ion affinity chromatography : II. Interaction of immobilized ferric ions with phosphorylated amino acids, peptides and proteins
  • 1992
  • Ingår i: Journal of Chromatography A. - 0021-9673 .- 1873-3778. ; 604:1, s. 19-28
  • Tidskriftsartikel (refereegranskat)abstract
    • The chromatographic behaviour of phosphoamino acids, phosphopeptides and phosphoproteins and their non-phosphorylated counterparts was studied on Fe(III)-Chelating Sepharose and Fe(III)-Chelating Superose. The phosphorylated compounds, in contrast to their non-phosphorylated or dephosphorylated counterparts, adsorb to immobilized iron(III) ions at pH 5.5 and can be desorbed by an increase in pH. Phosphoamino acids were eluted at pH 6.5-6.7, whereas monophosphopeptides and phosphoprotamine eluted in the pH range 6.9-7.5. Molecules possessing clusters(s) of carboxylic groups are weakly retained (gamma-carboxyglutamic acid, Ala-Ser-Glu5) or bound (polyglutamic acid, beta-casein) to the immobilized iron(III) ions at pH 5.5. Dephosphorylated beta-casein was desorbed at pH 7.0, whereas for elution of native (non-dephosphorylated) beta-casein, phosphate buffer of pH 7.7 was required. The homopolymer of polyglutamic acid was desorbed in the pH range 6.0-6.3, whereas copolymers of glutamic acid and tyrosine require pH 7.0-7.3 or even phosphate buffer at pH 7.7 for elution.
  •  
5.
  • Oscarsson, Sven, et al. (författare)
  • Amphiphilic agarose-based adsorbents for chromatography comparative study of adsorption capacities and desorption efficiencies
  • 1995
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673 .- 1873-3778. ; 689:1, s. 3-12
  • Tidskriftsartikel (refereegranskat)abstract
    • A number of hydrophobic derivatives attached to cross-linked agarose were studied as protein adsorbents. Differences in the adsorption and desorption behaviour were determined as functions of type and concentration of selected salts. Whereas octyl- and phenyl-Sepharose adsorb serum albumin preferentially, pyridyl-S-agarose shows a much stronger preferential affinity for IgG in the presence of high concentrations of lyotropic salts, such as sulphates. In contrast to pyridyl-S-agarose, a large portion of proteins remained fixed to octyl- and phenyl-Sepharose after extensive washing with 1 M NaOH.
  •  
6.
  •  
7.
  • Xue, Bo, et al. (författare)
  • Chromatographic and fluorometric study of interactions between thiophilic and hydrophobic ligands and tryptophan peptide homologues
  • 2006
  • Ingår i: Journal of Chromatography A. ; 1107:1-2, s. 46-51
  • Tidskriftsartikel (refereegranskat)abstract
    • The interactions of tryptophan and its peptide homologues with thiophilic ligands were studied in terms of their chromatographic retention and steady-state fluorescence under various conditions, and compared with non-polar structures typically regarded as pure hydrophobic ligands. The experimental results show that both non-polar and polar interactions are involved in what has been termed “thiophilic adsorption chromatography”.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy