SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Porqueres Natalia) "

Sökning: WFRF:(Porqueres Natalia)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Porqueres, Natalia, et al. (författare)
  • A hierarchical field-level inference approach to reconstruction from sparse Lyman-α forest data
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • We address the problem of inferring the three-dimensional matter distribution from a sparse set of one-dimensional quasar absorption spectra of the Lyman-alpha forest. Using a Bayesian forward modelling approach, we focus on extending the dynamical model to a fully self-consistent hierarchical field-level prediction of redshift-space quasar absorption sightlines. Our field-level approach rests on a recently developed semiclassical analogue to Lagrangian perturbation theory (LPT), which improves over noise problems and interpolation requirements of LPT. It furthermore allows for a manifestly conservative mapping of the optical depth to redshift space. In addition, this new dynamical model naturally introduces a coarse-graining scale, which we exploited to accelerate the Markov chain Monte-Carlo (MCMC) sampler using simulated annealing. By gradually reducing the effective temperature of the forward model, we were able to allow it to first converge on large spatial scales before the sampler became sensitive to the increasingly larger space of smaller scales. We demonstrate the advantages, in terms of speed and noise properties, of this field-level approach over using LPT as a forward model, and, using mock data, we validated its performance to reconstruct three-dimensional primordial perturbations and matter distribution from sparse quasar sightlines.
  •  
2.
  • Porqueres, Natalia, et al. (författare)
  • Bayesian forward modelling of cosmic shear data
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:2, s. 3035-3044
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a Bayesian hierarchical modelling approach to infer the cosmic matter density field, and the lensing and the matter power spectra, from cosmic shear data. This method uses a physical model of cosmic structure formation to infer physically plausible cosmic structures, which accounts for the non-Gaussian features of the gravitationally evolved matter distribution and light-cone effects. We test and validate our framework with realistic simulated shear data, demonstrating that the method recovers the unbiased matter distribution and the correct lensing and matter power spectrum. While the cosmology is fixed in this test, and the method employs a prior power spectrum, we demonstrate that the lensing results are sensitive to the true power spectrum when this differs from the prior. In this case, the density field samples are generated with a power spectrum that deviates from the prior, and the method recovers the true lensing power spectrum. The method also recovers the matter power spectrum across the sky, but as currently implemented, it cannot determine the radial power since isotropy is not imposed. In summary, our method provides physically plausible inference of the dark matter distribution from cosmic shear data, allowing us to extract information beyond the two-point statistics and exploiting the full information content of the cosmological fields.
  •  
3.
  • Porqueres, Natalia, et al. (författare)
  • Explicit Bayesian treatment of unknown foreground contaminations in galaxy surveys
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • The treatment of unknown foreground contaminations will be one of the major challenges for galaxy clustering analyses of coming decadal surveys. These data contaminations introduce erroneous large-scale effects in recovered power spectra and inferred dark matter density fields. In this work, we present an effective solution to this problem in the form of a robust likelihood designed to account for effects due to unknown foreground and target contaminations. Conceptually, this robust likelihood marginalizes over the unknown large-scale contamination amplitudes. We showcase the effectiveness of this novel likelihood via an application to a mock SDSS-III data set subject to dust extinction contamination. In order to illustrate the performance of our proposed likelihood, we infer the underlying dark-matter density field and reconstruct the matter power spectrum, being maximally agnostic about the foregrounds. The results are compared to those of an analysis with a standard Poissonian likelihood, as typically used in modern large-scale structure analyses. While the standard Poissonian analysis yields excessive power for large-scale modes and introduces an overall bias in the power spectrum, our likelihood provides unbiased estimates of the matter power spectrum over the entire range of Fourier modes considered in this work. Further, we demonstrate that our approach accurately accounts for and corrects the effects of unknown foreground contaminations when inferring three-dimensional density fields. Robust likelihood approaches, as presented in this work, will be crucial to control unknown systematic error and maximize the outcome of the decadal surveys.
  •  
4.
  • Porqueres, Natalia, et al. (författare)
  • Inferring high-redshift large-scale structure dynamics from the Lyman-alpha forest
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the major science goals over the coming decade is to test fundamental physics with probes of the cosmic large-scale structure out to high redshift. Here we present a fully Bayesian approach to infer the three-dimensional cosmic matter distribution and its dynamics at z > 2 from observations of the Lyman-alpha forest. We demonstrate that the method recovers the unbiased mass distribution and the correct matter power spectrum at all scales. Our method infers the three-dimensional density field from a set of one-dimensional spectra, interpolating the information between the lines of sight. We show that our algorithm provides unbiased mass profiles of clusters, becoming an alternative for estimating cluster masses complementary to weak lensing or X-ray observations. The algorithm employs a Hamiltonian Monte Carlo method to generate realizations of initial and evolved density fields and the three-dimensional large-scale flow, revealing the cosmic dynamics at high redshift. The method correctly handles multi-modal parameter distributions, which allow constraining the physics of the intergalactic medium with high accuracy. We performed several tests using realistic simulated quasar spectra to test and validate our method. Our results show that detailed and physically plausible inference of three-dimensional large-scale structures at high redshift has become feasible.
  •  
5.
  • Porqueres, Natalia, et al. (författare)
  • Lifting weak lensing degeneracies with a field-based likelihood
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 509:3, s. 3194-3202
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a field-based approach to the analysis of cosmic shear data to infer jointly cosmological parameters and the dark matter distribution. This forward modelling approach samples the cosmological parameters and the initial matter fluctuations, using a physical gravity model to link the primordial fluctuations to the non-linear matter distribution. Cosmological parameters are sampled and updated consistently through the forward model, varying (1) the initial matter power spectrum, (2) the geometry through the distance-redshift relationship, and (3) the growth of structure and light-cone effects. Our approach extracts more information from the data than methods based on two-point statistics. We find that this field-based approach lifts the strong degeneracy between the cosmological matter density, Ωm, and the fluctuation amplitude, σ8, providing tight constraints on these parameters from weak lensing data alone. In the simulated four-bin tomographic experiment we consider, the field-based likelihood yields marginal uncertainties on σ8 and Ωm that are, respectively, a factor of 3 and 5 smaller than those from a two-point power spectrum analysis applied to the same underlying data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy