SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Porreca Frank) "

Sökning: WFRF:(Porreca Frank)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ossipov, Michael H., et al. (författare)
  • Control of chronic pain by the ubiquitin-proteasome system in the spinal cord
  • 2007
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 27:31, s. 8226-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic pain is maintained in part by long-lasting neuroplastic changes in synapses and several proteins critical for synaptic plasticity are degraded by the ubiquitin-proteasome system (UPS). Here, we show that proteasome inhibitors administered intrathecally or subcutaneously prevented the development and reversed nerve injury-induced pain behavior. They also blocked pathological pain induced by sustained administration of morphine or spinal injection of dynorphin A, an endogenous mediator of chronic pain. Proteasome inhibitors blocked mechanical allodynia and thermal hyperalgesia in all three pain models although they did not modify responses to mechanical stimuli, but partially inhibited responses to thermal stimuli in control rats. In the spinal cord, these compounds abolished the enhanced capsaicin-evoked calcitonin gene-related peptide (CGRP) release and dynorphin A upregulation, both elicited by nerve injury. Model experiments demonstrated that the inhibitors may act directly on dynorphin-producing cells, blocking dynorphin secretion. Thus, the effects of proteasome inhibitors on chronic pain were apparently mediated through several cellular mechanisms indispensable for chronic pain, including those of dynorphin A release and postsynaptic actions, and of CGRP secretion. Levels of several UPS proteins were reduced in animals with neuropathic pain, suggesting that UPS downregulation, like effects of proteasome inhibitors, counteracts the development of chronic pain. The inhibitors did not produce marked or disabling motor disturbances at doses that were used to modify chronic pain. These results suggest that the UPS is a critical intracellular regulator of pathological pain, and that UPS-mediated protein degradation is required for maintenance of chronic pain and nociceptive, but not non-nociceptive responses in normal animals.
  •  
2.
  • Sui, Ping, et al. (författare)
  • Dimethyl-Labeling-Based Protein Quantification and Pathway Search : A Novel Method of Spinal Cord Analysis Applicable for Neurological Studies
  • 2013
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:5, s. 2245-2252
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe a simple, fast, and inexpensive approach for quantitative analysis of proteins originated from small central nervous system (CNS) samples, i.e., rat spinal cord. The presented sample preparation protocol and quantification results from isotope dimethyl labeling were statistically evaluated and approved as a reliable and robust method for animal model studies of neurological disorders. Combined with the biopathway analysis tool IPA, the method was applied for comparative analysis of proteins in the dorsal and ventral segments of the rat spinal cord. The results are in agreement with the previously published protein patterns in these tissues. A majority (73%) of proteins identified as “related with CNS development and functions” were found to be overexpressed in the dorsal section compared to the ventral segment. The pathway related to neuropathic pain was overrepresented in the dorsal tissue samples. The developed novel approach may be applied for analyses of the spinal cord mediated neurological dysfunctions and pathological pain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy