SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pors K) "

Sökning: WFRF:(Pors K)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stenstedt, K, et al. (författare)
  • CYP2W1 polymorphism: functional aspects and relation to risk for colorectal cancer
  • 2013
  • Ingår i: Pharmacogenomics. - : Future Medicine Ltd. - 1744-8042 .- 1462-2416. ; 14:13, s. 1615-1622
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: This study aims to investigate the possible association between the risk of colorectal cancer (CRC) and allelic variants of CYP2W1 and their functional properties. Materials & methods: The distribution of three different CYP2W1 alleles (CYP2W1*1, CYP2W1*2 and CYP2W1*6) in 1785 CRC patients and 1761 healthy blood donors was determined using the TaqMan® (Applied Biosystems, CA, USA) allelic discrimination assay or allele-specific amplification. Corresponding gene products (CYP2W1.1, CYP2W1.2 and CYP2W1.6) were expressed in human colon cancer SW480 cells and their activities towards two different substrates, the duocarmycin analogs ICT2706 and ICT2726, were monitored. Results: No significant differences in the distribution of CYP2W1*1, CYP2W1*2 and CYP2W1*6 alleles were found between CRC patients and controls. The CYP2W1.1, CYP2W1.2 and CYP2W1.6 variant enzymes were expressed at the similar levels in the transfected SW480 cells and had comparable kinetics in terms of the metabolism of the duocarmycin ICT2726, as well as in the bioactivation of ICT2706 into a cytotoxic product. Conclusion: These epidemiological data obtained from a large population of CRC patients and controls cannot confirm the previously suggested decreased risk for CRC among carriers of CYP2W1*2. On the molecular level, this conclusion is further supported by the similar catalytic characteristics of the CYP2W1.1, CYP2W1.2 and CYP2W1.6 variants of CYP2W1. Original submitted 19 March 2013; Revision submitted 15 July 2013
  •  
2.
  • Cadenas, J., et al. (författare)
  • Regulation of human oocyte maturation in vivo during the final maturation of follicles
  • 2023
  • Ingår i: Human Reproduction. - : Oxford University Press (OUP). - 0268-1161 .- 1460-2350. ; 38:4, s. 686-700
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY QUESTION: Which substances and signal transduction pathways are potentially active downstream to the effect of FSH and LH in the regulation of human oocyte maturation in vivo? SUMMARY ANSWER: The regulation of human oocyte maturation appears to be a multifactorial process in which several different signal transduction pathways are active. WHAT IS KNOWN ALREADY: Many studies in animal species have provided insight into the mechanisms that govern the final maturation of oocytes. Currently, these studies have identified several different mechanisms downstream to the effects of FSH and LH. Some of the identified mechanisms include the regulation of cAMP/cGMP levels in oocytes involving C-type natriuretic peptide (CNP), effects of epidermal growth factor (EGF)-related peptides such as amphiregulin (AREG) and/or epiregulin (EREG), effect of TGF-β family members including growth differentiation factor 9 (GDF9) and morphogenetic protein 15 (BMP15), activins/inhibins, follicular fluid meiosis activating sterol (FF-MAS), the growth factor midkine (MDK), and several others. However, to what extent these pathways and mechanisms are active in humans in vivo is unknown. STUDY DESIGN, SIZE, DURATION: This prospective cohort study included 50 women undergoing fertility treatment in a standard antagonist protocol at a university hospital affiliated fertility clinic in 2016-2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: We evaluated the substances and signalling pathways potentially affecting human oocyte maturation in follicular fluid (FF) and granulosa cells (GCs) collected at five time points during the final maturation of follicles. Using ELISA measurement and proteomic profiling of FF and whole genome gene expression in GC, the following substances and their signal transduction pathways were collectively evaluated: CNP, the EGF family, inhibin-A, inhibin-B, activins, FF-MAS, MDK, GDF9, and BMP15. MAIN RESULTS AND THE ROLE OF CHANCE: All the evaluated substances and signal transduction pathways are potentially active in the regulation of human oocyte maturation in vivo except for GDF9/BMP15 signalling. In particular, AREG, inhibins, and MDK were significantly upregulated during the first 12-17 h after initiating the final maturation of follicles and were measured at significantly higher concentrations than previously reported. Additionally, the genes regulating FF-MAS synthesis and metabolism were significantly controlled in favour of accumulation during the first 12-17 h. In contrast, concentrations of CNP were low and did not change during the process of final maturation of follicles, and concentrations of GDF9 and BMP15 were much lower than reported in small antral follicles, suggesting a less pronounced influence from these substances. LARGE SCALE DATA: None. LIMITATIONS, REASONS FOR CAUTION: Although GC and cumulus cells have many similar features, it is a limitation of the current study that information for the corresponding cumulus cells is not available. However, we seldom recovered a cumulus-oocyte complex during the follicle aspiration from 0 to 32 h. WIDER IMPLICATIONS OF THE FINDINGS: Delineating the mechanisms governing the regulation of human oocyte maturation in vivo advances the possibility of developing a platform for IVM that, as for most other mammalian species, results in healthy offspring with good efficacy. Mimicking the intrafollicular conditions during oocyte maturation in vivo in small culture droplets during IVM may enhance oocyte nuclear and cytoplasmic maturation. The primary outlook for such a method is, in the context of fertility preservation, to augment the chances of achieving biological children after a cancer treatment by subjecting oocytes from small antral follicles to IVM. Provided that aspiration of oocytes from small antral follicles in vivo can be developed with good efficacy, IVM may be applied to infertile patients on a larger scale and can provide a cheap alternative to conventional IVF treatment with ovarian stimulation. Successful IVM has the potential to change current established techniques for infertility treatment. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the University Hospital of Copenhagen, Rigshospitalet, the Independent Research Fund Denmark (grant number 0134-00448), and the Interregional EU-sponsored ReproUnion network. There are no conflicts of interest to be declared.
  •  
3.
  • Pla, Indira, et al. (författare)
  • Proteome of fluid from human ovarian small antral follicles reveals insights in folliculogenesis and oocyte maturation
  • 2021
  • Ingår i: Human Reproduction. - : Oxford University Press (OUP). - 0268-1161 .- 1460-2350. ; 36:3, s. 756-770
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY QUESTION: Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogenesis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)?SUMMARY ANSWER: The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where several proteins showed a strong relationship with follicular developmental processes.WHAT IS KNOWN ALREADY: Protein composition of human ovarian FF constitutes the microenvironment for oocyte development. Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in folliculogenesis.STUDY DESIGN, SIZE, DURATION: Proteins in FF from unstimulated hSAF (size 6.1 ± 0.4 mm) were characterised by mass spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n = 13, from 6 women), were also analysed.PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected FF from hSAF of ovaries that had been surgically removed from 31 women (∼28.5 years old) undergoing unilateral ovariectomy for fertility preservation.MAIN RESULTS AND THE ROLE OF CHANCE: In total, 2461 proteins were identified, of which 1108 identified for the first time in FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level occur already in FF from small antral follicles related to subsequent oocyte maturation.LIMITATIONS, REASONS FOR CAUTION: A possible limitation of our study is the uncertainty of the proportion of the sampled follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons.WIDER IMPLICATIONS OF THE FINDINGS: This study is, to our knowledge, the first proteomics characterisation of FF from hSAF obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo ovulation.STUDY FUNDING/COMPETING INTEREST(S): The authors thank the financial support from ReproUnion, which is funded by the Interreg V EU programme. No conflict of interest was reported by the authors.TRIAL REGISTRATION NUMBER: N/A.
  •  
4.
  • Pla, Indira, et al. (författare)
  • Proteomic Alterations in Follicular Fluid of Human Small Antral Follicles Collected from Polycystic Ovaries—A Pilot Study
  • 2022
  • Ingår i: Life. - : MDPI AG. - 0024-3019 .- 2075-1729. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycystic ovaries (PCO) contain antral follicles that arrest growing around 3–11 mm in diameter, perturbing the dominant follicle’s selection and the subsequent ovulatory process. Proteomic alterations of PCO follicular fluid (FF) (i.e., microenvironment in which the oocyte develops until ovulation) have been studied from large follicles in connection with oocyte pickup during ovarian stimulation. The present study aimed to detect proteomic alterations in FF from unstimulated human small antral follicles (hSAF) obtained from PCO. After performing deep-sequencing label-free proteomics on 10 PCO and 10 non-PCO FF samples from unstimulated hSAF (4.6–9.8 mm), 1436 proteins were identified, of which 115 were dysregulated in PCO FF samples. Pathways and processes related to the immune system, inflammation, and oxidative stress appeared to be upregulated in PCO, while extracellular matrix receptors interactions, the collagens-containing extracellular matrix, and the regulation of signaling were downregulated. The secreted proteins SFRP1, THBS4, and C1QC significantly decreased their expression in PCO FF, and this downregulation was suggested to affect future oocyte competence. In conclusion, our study revealed, for the first time, evidence of proteomic alterations occurring in the FF of PCO hSAF that may be related to the dysfunction of follicular growth and subsequent oocyte competence.
  •  
5.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy