SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Portillo I) "

Search: WFRF:(Portillo I)

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Bouyoucef, S E, et al. (author)
  • Poster Session 2 : Monday 4 May 2015, 08
  • 2015
  • In: European Heart Journal Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2404 .- 2047-2412. ; 16 Suppl 1
  • Journal article (peer-reviewed)
  •  
4.
  • Pantazis, N, et al. (author)
  • Determining the likely place of HIV acquisition for migrants in Europe combining subject-specific information and biomarkers data
  • 2019
  • In: Statistical methods in medical research. - : SAGE Publications. - 1477-0334 .- 0962-2802. ; 28:7, s. 1979-1997
  • Journal article (peer-reviewed)abstract
    • In most HIV-positive individuals, infection time is only known to lie between the time an individual started being at risk for HIV and diagnosis time. However, a more accurate estimate of infection time is very important in certain cases. For example, one of the objectives of the Advancing Migrant Access to Health Services in Europe (aMASE) study was to determine if HIV-positive migrants, diagnosed in Europe, were infected pre- or post-migration. We propose a method to derive subject-specific estimates of unknown infection times using information from HIV biomarkers’ measurements, demographic, clinical, and behavioral data. We assume that CD4 cell count (CD4) and HIV-RNA viral load trends after HIV infection follow a bivariate linear mixed model. Using post-diagnosis CD4 and viral load measurements and applying the Bayes’ rule, we derived the posterior distribution of the HIV infection time, whereas the prior distribution was informed by AIDS status at diagnosis and behavioral data. Parameters of the CD4–viral load and time-to-AIDS models were estimated using data from a large study of individuals with known HIV infection times (CASCADE). Simulations showed substantial predictive ability (e.g. 84% of the infections were correctly classified as pre- or post-migration). Application to the aMASE study ( n = 2009) showed that 47% of African migrants and 67% to 72% of migrants from other regions were most likely infected post-migration. Applying a Bayesian method based on bivariate modeling of CD4 and viral load, and subject-specific information, we found that the majority of HIV-positive migrants in aMASE were most likely infected after their migration to Europe.
  •  
5.
  •  
6.
  • 2019
  • Journal article (peer-reviewed)
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Carter, M. S., et al. (author)
  • Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands - responses to climatic and environmental changes
  • 2012
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 9:10, s. 3739-3755
  • Journal article (peer-reviewed)abstract
    • In this study, we compare annual fluxes of methane (CH4), nitrous oxide (N2O) and soil respiratory carbon dioxide (CO2) measured at nine European peatlands (n = 4) and shrublands (n = 5). The sites range from northern Sweden to Spain, covering a span in mean annual air temperature from 0 to 16 degrees C, and in annual precipitation from 300 to 1300 mm yr(-1). The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (> 30 yr) effect of drainage was assessed, while increased nitrogen deposition was investigated at three peatland sites. The shrublands were generally sinks for atmospheric CH4, whereas the peatlands were CH4 sources, with fluxes ranging from -519 to + 6890 mg CH4-Cm-2 yr(-1) across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from -14 to 42 mg N2O-Nm(-2) yr(-1). Highest N2O emission occurred at the sites that had highest nitrate (NO3-) concentration in the soil water. Furthermore, experimentally increased NO3- deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 g CO2-C m(-2) yr(-1). Drought and long-term drainage from -519 to + 6890 mg CH4-C m(-2) yr(-1) across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from -14 to 42 mg N2O-N m(-2) yr(-1). Highest N2O emission occurred at the sites that had highest nitrate (NO3-) concentration in the soil water. Furthermore, experimentally increased NO3- deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 g CO2-Cm-2 yr(-1). Drought and long-term drainage generally reduced the soil CO2 efflux, except at a hydric shrubland where drought tended to increase soil respiration. In terms of fractional importance of each greenhouse gas to the total numerical global warming response, the change in CO2 efflux dominated the response in all treatments (ranging 71-96%), except for NO3- addition where 89% was due to change in CH4 emissions. Thus, in European peatlands and shrublands the effect on global warming induced by the investigated anthropogenic disturbances will be dominated by variations in soil CO2 fluxes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view