SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Posti J) "

Sökning: WFRF:(Posti J)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Hossain, I., et al. (författare)
  • Admission Levels of Total Tau and β-Amyloid Isoforms 1–40 and 1–42 in Predicting the Outcome of Mild Traumatic Brain Injury
  • 2020
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The purpose of this study was to investigate if admission levels of total tau (T-tau) and β-amyloid isoforms 1-40 (Aβ40) and 1-42 (Aβ42) could predict clinical outcome in patients with mild traumatic brain injury (mTBI). Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13] recruited in Turku University Hospital, Turku, Finland were included in this study. Blood samples were drawn within 24 h of admission for analysis of plasma T-tau, Aβ40, and Aβ42. Patients were divided into computed tomography (CT)-positive and CT-negative groups. The outcome was assessed 6–12 months after the injury using the Extended Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8) or incomplete (GOSE < 8) recovery. The Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) was also used to assess mTBI-related symptoms. Predictive values of the biomarkers were analyzed independently, in panels and together with clinical parameters. Results: The admission levels of plasma T-tau, Aβ40, and Aβ42 were not significantly different between patients with complete and incomplete recovery. The levels of T-tau, Aβ40, and Aβ42 could poorly predict complete recovery, with areas under the receiver operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort, there was a significant negative correlation between the levels of T-tau and ordinal GOSE score (Spearman ρ = −0.231, p = 0.018). In a multivariate logistic regression model including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time from injury to sampling, and CT findings, none of the biomarkers could predict complete recovery independently or together with the other two biomarkers. Plasma levels of T-tau, Aβ40, and Aβ42 did not significantly differ between the outcome groups either within the CT-positive or CT-negative subgroups. Levels of Aβ40 and Aβ42 did not significantly correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly correlated with ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The levels of T-tau, Aβ40, and Aβ42 were not correlated with the RPCSQ scores. Conclusions: The early levels of T-tau are correlated with the outcome in patients with mTBI, but none of the biomarkers either alone or in any combinations could predict complete recovery in patients with mTBI. © Copyright © 2020 Hossain, Mohammadian, Takala, Tenovuo, Azurmendi Gil, Frantzén, van Gils, Hutchinson, Katila, Maanpää, Menon, Newcombe, Tallus, Hrusovsky, Wilson, Gill, Blennow, Sanchez, Zetterberg and Posti.
  •  
5.
  • Posti, J. P., et al. (författare)
  • Admission Levels of Interleukin 10 and Amyloid beta 1-40 Improve the Outcome Prediction Performance of the Helsinki Computed Tomography Score in Traumatic Brain Injury
  • 2020
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Blood biomarkers may enhance outcome prediction performance of head computed tomography scores in traumatic brain injury (TBI). Objective: To investigate whether admission levels of eight different protein biomarkers can improve the outcome prediction performance of the Helsinki computed tomography score (HCTS) without clinical covariates in TBI. Materials and methods: Eighty-two patients with computed tomography positive TBIs were included in this study. Plasma levels of beta-amyloid isoforms 1-40 (A beta 40) and 1-42 (A beta 42), glial fibrillary acidic protein, heart fatty acid-binding protein, interleukin 10 (IL-10), neurofilament light, S100 calcium-binding protein B, and total tau were measured within 24 h from admission. The patients were divided into favorable (Glasgow Outcome Scale-Extended 5-8, n = 49) and unfavorable (Glasgow Outcome Scale-Extended 1-4, n = 33) groups. The outcome was assessed 6-12 months after injury. An optimal predictive panel was investigated with the sensitivity set at 90-100%. Results: The HCTS alone yielded a sensitivity of 97.0% (95% CI: 90.9-100) and specificity of 22.4% (95% CI: 10.2-32.7) and partial area under the curve of the receiver operating characteristic of 2.5% (95% CI: 1.1-4.7), in discriminating patients with favorable and unfavorable outcomes. The threshold to detect a patient with unfavorable outcome was an HCTS > 1. The three best individually performing biomarkers in outcome prediction were A beta 40, A beta 42, and neurofilament light. The optimal panel included IL-10, A beta 40, and the HCTS reaching a partial area under the curve of the receiver operating characteristic of 3.4% (95% CI: 1.7-6.2) with a sensitivity of 90.9% (95% CI: 81.8-100) and specificity of 59.2% (95% CI: 40.8-69.4). Conclusion: Admission plasma levels of IL-10 and A beta 40 significantly improve the prognostication ability of the HCTS after TBI.
  •  
6.
  • Posti, J. P., et al. (författare)
  • Correlation of Blood Biomarkers and Biomarker Panels with Traumatic Findings on Computed Tomography after Traumatic Brain Injury
  • 2019
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 36:14, s. 2178-89
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the study was to examine the ability of eight protein biomarkers and their combinations in discriminating computed tomography (CT)-negative and CT-positive patients with traumatic brain injury (TBI), utilizing highly sensitive immunoassays in a well-characterized cohort. Blood samples were obtained from 160 patients with acute TBI within 24 h of admission. Levels of beta-amyloid isoforms 1-40 (A beta 40) and 1-42 (A beta 42), glial fibrillary acidic protein (GFAP), heart fatty-acid binding protein (H-FABP), interleukin 10 (IL-10), neurofilament light (NF-L), S100 calcium-binding protein B (S100B), and tau were measured. Patients were divided into CT-negative (n = 65) and CT-positive (n = 95), and analyses were conducted separately for TBIs of all severities (Glasgow Coma Scale [GCS] score 3-15) and mild TBIs (mTBIs; GCS 13-15). NF-L, GFAP, and tau were the best in discriminating CT-negative and CT-positive patients, both in patients with mTBI and with all severities. In patients with all severities, area under the curve of the receiver operating characteristic (AUC) was 0.822, 0.817, and 0.781 for GFAP, NF-L, and tau, respectively. In patients with mTBI, AUC was 0.720, 0.689, and 0.676, for GFAP, tau, and NF-L, respectively. The best panel of three biomarkers for discriminating CT-negative and CT-positive patients in the group of all severities was a combination of GFAP+H-FABP+IL-10, with a sensitivity of 100% and specificity of 38.5%. In patients with mTBI, the best panel of three biomarkers was H-FABP+S100B+tau, with a sensitivity of 100% and specificity of 46.4%. Panels of biomarkers outperform individual biomarkers in separating CT-negative and CT-positive patients. Panels consisted mainly of different biomarkers than those that performed best as an individual biomarker.
  •  
7.
  • Koivikko, P., et al. (författare)
  • Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury
  • 2022
  • Ingår i: Emergency Medicine Journal. - : BMJ. - 1472-0205 .- 1472-0213. ; 39, s. 206-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Background There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting. Methods Adult patients (>= 18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011-2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13-15 was classified as mild (mTBI); GCS 9-12 as moderate (moTBI) and GCS 3-8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed. Results Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls. Conclusions S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting.
  •  
8.
  • Lagerstedt, L., et al. (författare)
  • Interleukin 10 and Heart Fatty Acid-Binding Protein as Early Outcome Predictors in Patients With Traumatic Brain Injury
  • 2020
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Patients with traumatic brain injury (TBI) exhibit a variable and unpredictable outcome. The proteins interleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have shown predictive values for the presence of intracranial lesions. Aim:To evaluate the individual and combined outcome prediction ability of IL-10 and H-FABP, and to compare them to the more studied proteins S100 beta, glial fibrillary acidic protein (GFAP), and neurofilament light (NF-L), both with and without clinical predictors. Methods:Blood samples from patients with acute TBI (all severities) were collected 6 months post injury using the Glasgow Outcome Scale Extended (GOSE) score, dichotomizing patients into: (i) those with favorable (GOSE >= 5)/unfavorable outcome (GOSE <= 4) and complete (GOSE = 8)/incomplete (GOSE <= 7) recovery, and (ii) patients with mild TBI (mTBI) and patients with TBIs of all severities. Results:When sensitivity was set at 95-100%, the proteins' individual specificities remained low. H-FABP showed the best specificity (%) and sensitivity (100%) in predicting complete recovery in patients with mTBI. IL-10 had the best specificity (50%) and sensitivity (96%) in identifying patients with favorable outcome in patients with TBIs of all severities. When individual proteins were combined with clinical parameters, a model including H-FABP, NF-L, and ISS yielded a specificity of 56% and a sensitivity of 96% in predicting complete recovery in patients with mTBI. In predicting favorable outcome, a model consisting IL-10, age, and TBI severity reached a specificity of 80% and a sensitivity of 96% in patients with TBIs of all severities. Conclusion:Combining novel TBI biomarkers H-FABP and IL-10 with GFAP, NF-L and S100 beta and clinical parameters improves outcome prediction models in TBI.
  •  
9.
  • Hossain, I., et al. (författare)
  • Plasma neurofilament light admission levels and development of axonal pathology in mild traumatic brain injury
  • 2023
  • Ingår i: BMC Neurology. - 1471-2377. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIt is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI.MethodsNinety-three patients with mTBI (GCS & GE; 13), blood sample for NF-L within 24 h of admission, and DW-MRI & GE; 90 days post-injury (median = 229) were included. Mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the skeletonized WM tracts of the whole brain. Outcome was assessed using the Extended Glasgow Outcome Scale (GOSE) at the time of imaging. Patients were divided into CT-positive and -negative, and complete (GOSE = 8) and incomplete recovery (GOSE < 8) groups.ResultsThe levels of NF-L and FA correlated negatively in the whole cohort (p = 0.002), in CT-positive patients (p = 0.016), and in those with incomplete recovery (p = 0.005). The same groups showed a positive correlation with mean MD, AD, and RD (p < 0.001-p = 0.011). In CT-negative patients or in patients with full recovery, significant correlations were not found.ConclusionIn patients with mTBI, the significant correlation between NF-L levels at admission and diffusion tensor imaging (DTI) measurements of diffuse axonal injury (DAI) over more than 3 months suggests that the early levels of plasma NF-L may associate with the presence of DAI at a later phase of TBI.
  •  
10.
  • Iverson, G. L., et al. (författare)
  • Serum Neurofilament Light Is Elevated Differentially in Older Adults with Uncomplicated Mild Traumatic Brain Injuries
  • 2019
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 36:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilament light (NF-L) might have diagnostic and prognostic potential as a blood biomarker for mild traumatic brain injury (mTBI). However, elevated NF-L is associated with several neurological disorders associated with older age, which could confound its usefulness as a traumatic brain injury biomarker. We examined whether NF-L is elevated differentially following uncomplicated mTBI in older adults with pre-injury neurological disorders. In a case-control study, a sample of 118 adults (mean age = 62.3 years, standard deviation [SD] = 22.5, range = 18-100; 52.5% women) presenting to the emergency department (ED) with an uncomplicated mTBI were enrolled. All participants underwent head computed tomography in the ED and showed no macroscopic evidence of injury. The mean time between injury and blood sampling was 8.3 h (median [Md] = 3.5; SD = 13.5; interquartile range [IQR] = 1.9-6.0, range = 0.8-67.4, and 90% collected within 19 h). A sample of 40 orthopedically-injured trauma control subjects recruited from a second ED also were examined. Serum NF-L levels were measured and analyzed using Human Neurology 4-Plex A assay on a HD-1 Single Molecule Array (Simoa) instrument. A high correlation was found between age and NF-L levels in the total mTBI sample (r = 0.80), within the subgroups without pre-injury neurological diseases (r = 0.76) and with pre-injury neurological diseases (r = 0.68), and in the trauma control subjects (r = 0.76). Those with mTBIs and pre-injury neurological conditions had higher NF-L levels than those with no pre-injury neurological conditions (p < 0.001, Cohen's d = 1.01). Older age and pre-injury neurological diseases are associated with elevated serum NF-L levels in patients with head trauma and in orthopedically-injured control subjects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy