SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Potjans Tobias) "

Sökning: WFRF:(Potjans Tobias)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruederle, Daniel, et al. (författare)
  • A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems
  • 2011
  • Ingår i: Biological Cybernetics. - : Springer Science and Business Media LLC. - 0340-1200 .- 1432-0770. ; 104:4-5, s. 263-296
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results.
  •  
2.
  • Djurfeldt, Mikael, 1967-, et al. (författare)
  • Run-Time Interoperability Between Neuronal Network Simulators Based on the MUSIC Framework
  • 2010
  • Ingår i: Neuroinformatics. - : Springer Science and Business Media LLC. - 1539-2791 .- 1559-0089. ; 8:1, s. 43-60
  • Tidskriftsartikel (refereegranskat)abstract
    • MUSIC is an API allowing large scale neuron simulators using MPI internally to exchange data during runtime. We provide experiences from the adaptation of two neuronal network simulators of different kinds, NEST and MOOSE, to this API. A multi-simulation of a cortico-striatal network model involving both simulators is performed, demonstrating how MUSIC can promote inter-operability between models written for different simulators and how these can be re-used to build a larger model system. We conclude that MUSIC fulfills the design goals of being portable and simple to adapt to existing simulators. In addition, since the MUSIC API enforces independence between the applications, the multi-simulationcould be built from pluggable component modules without adaptation of the components to each other in terms of simulation time-step or topology of connections between the modules.
  •  
3.
  • Lindén, Henrik, et al. (författare)
  • Modeling the spatial reach of the LFP
  • 2011
  • Ingår i: Neuron. - : Elsevier BV. - 0896-6273 .- 1097-4199. ; 72:5, s. 859-872
  • Tidskriftsartikel (refereegranskat)abstract
    • The local field potential (LFP) reflects activity of many neurons in the vicinity of the recording electrode and is therefore useful for studying local network dynamics. Much of the nature of the LFP is, however, still unknown. There are, for instance, contradicting reports on the spatial extent of the region generating the LFP. Here, we use a detailed biophysical modeling approach to investigate the size of the contributing region by simulating the LFP from a large number of neurons around the electrode. We find that the size of the generating region depends on the neuron morphology, the synapse distribution, and the correlation in synaptic activity. For uncorrelated activity, the LFP represents cells in a small region (within a radius of a few hundred micrometers). If the LFP contributions from different cells are correlated, the size of the generating region is determined by the spatial extent of the correlated activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy