SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pourkabirian Arsalan 1983) "

Sökning: WFRF:(Pourkabirian Arsalan 1983)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cha, Eunjung, 1985, et al. (författare)
  • 0.3-14 and 16-28 GHz Wide-Bandwidth Cryogenic MMIC Low-Noise Amplifiers
  • 2018
  • Ingår i: IEEE Transactions on Microwave Theory and Techniques. - 0018-9480 .- 1557-9670. ; 66:11, s. 4860-4869
  • Tidskriftsartikel (refereegranskat)abstract
    • We present two monolithic microwave integrated circuit (MMIC) cryogenic broadband low-noise amplifiers (LNAs) based on the 100 nm gate length InP high-electron mobility transistor technology for the frequency range of 0.3-14 and 16-28 GHz. The 0.3-14 GHz three-stage LNA exhibited a gain of 41.6 ± 1.4 dB and an average noise temperature of 3.5 K with a minimum noise temperature of 2.2 K at 6 GHz when cooled down to 4 K. The 16-28 GHz three-stage LNA showed a gain of 32.3 ± 1.8 dB and an average noise temperature of 6.3 K with a minimum noise temperature of 4.8 K at 20.8 GHz at the ambient temperature of 4 K. This is the first demonstration of cryogenic MMIC LNA covering the whole K-band. To the best of the authors' knowledge, the cryogenic MMIC LNAs demonstrated the state-of-the-art noise performance in the 0.3-14 and 16-28 GHz frequency range.
  •  
2.
  • Cha, Eunjung, 1985, et al. (författare)
  • A 300-mu W Cryogenic HEMT LNA for Quantum Computing
  • 2020
  • Ingår i: PROCEEDINGS OF THE 2020 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS). - 0149-645X .- 2576-7216. - 9781728168159 ; , s. 1299-1302
  • Konferensbidrag (refereegranskat)abstract
    • This paper reports on ultra-low power 4-8 GHz (C-band) InP high-electron mobility transistor (HEMT) cryogenic low-noise amplifiers (LNAs) aimed for qubit amplification in quantum computing. We have investigated dc power dissipation in hybrid three-stage cryogenic LNAs using 100-nm gate length InP HEMTs with different indium content in the channel (65% and 80%). The noise performance at 300 K was found to be comparable for both channel structures. At 5 K, an LNA with 65% indium channel exhibited significantly lower noise temperature at any dc power dissipation compared to the LNA with 80% indium channel. The LNA with 65% indium channel achieved an average noise of 3.2 K with 23 dB gain at an ultra-low power consumption of 300 mu W. To the best of authors' knowledge, the LNA exhibited the lowest noise temperature to date for sub-milliwatt power cryogenic C-band LNAs.
  •  
3.
  • Cha, Eunjung, 1985, et al. (författare)
  • Cryogenic low-noise InP HEMTs: A source-drain distance study
  • 2016
  • Ingår i: 2016 Compound Semiconductor Week, CSW 2016. - 9781509019649 ; , s. Article number 7528576-
  • Konferensbidrag (refereegranskat)abstract
    • The scaling effect of the source-drain distance was investigated in order to improve the performance of low-noise InP HEMTs at cryogenic temperatures 4-15 K. The highest dc transconductance at an operating temperature of 4.8 K and low bias power was achieved at a source-drain distance of 1.4 mu m. The extracted HEMT minimum noise temperature was 0.9 K at 5.8 GHz for a 3-stage 4-8 GHz hybrid low-noise amplifier at 10 K.
  •  
4.
  • Cha, Eunjung, 1985, et al. (författare)
  • Optimization of Channel Structures in InP HEMT Technology for Cryogenic Low-Noise and Low-Power Operation
  • 2023
  • Ingår i: IEEE Transactions on Electron Devices. - 1557-9646 .- 0018-9383. ; 70:5, s. 2431-2436
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the impact from channel composition on the cryogenic low-noise performance at low dc power for a 100-nm gate-length InGaAs-InAlAs-InP high-electron mobility transistor (HEMT). Two indium (In) channel compositions, 65% and 80%, were studied by dc and RF characterization at 300 and 5 K. For the cryogenic low-noise optimization, it was important to increase the transconductance to gate–source capacitance ratio in the weak inversion region implying that a higher maximum cutoff frequency in the HEMT does not guarantee lower noise. The HEMT noise performance was obtained from noise measurements in a hybrid three-stage 4–8-GHz ( $\textit{C}$ -band) low-noise amplifier (LNA) down to 300- $\mu$ W dc power dissipation. While the HEMT LNA noise performance for both the channel compositions at 300 K was found to be comparable, the HEMT LNA at 5 K with 65% In channel showed a minimum noise temperature of 1.4 K, whereas the noise temperature in the HEMT LNA with 80% In channel HEMTs increased to 2.4 K. The difference in the noise became more pronounced at reduced dc power dissipation. The ultralow dc power of 300 $\mu$ W demonstrated for a cryogenic $\textit{C}$ -band LNA with an average noise temperature of 2.9 K and 24-dB gain is of interest for future qubit read-out electronics at 4 K.
  •  
5.
  • Cha, Eunjung, 1985, et al. (författare)
  • Two-Finger InP HEMT Design for Stable Cryogenic Operation of Ultra-Low-Noise Ka- and Q-Band LNAs
  • 2017
  • Ingår i: IEEE Transactions on Microwave Theory and Techniques. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9480 .- 1557-9670. ; 65:12, s. 5171-5180
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the cryogenic stability of two-finger 100-nm gate-length InP HEMTs aimed for Ka- and Q-band ultra-low noise amplifiers (LNAs). InP HEMTs with unit gate widths ranging between 30 and 50 mu m exhibit unstable cryogenic behavior with jumps in drain current and discontinuous peaks in transconductance. We also find that shorter gate length enhances the cryogenic instability. We demonstrate that the instability of two-finger transistors can be suppressed by either adding a source air bridge, connecting the back end of gates, or increasing the gate resistance. A three-stage 24-40 GHz and a four-stage 28-52-GHz monolithic microwave-integrated circuit LNA using the stabilized InP HEMTs are presented. The Ka-band amplifier achieves a minimum noise temperature of 7 K at 25.6 GHz with an average noise temperature of 10.6 K at an ambient temperature of 5.5 K. The amplifier gain is 29 dB +/- 0.6 dB. The Q-band amplifier exhibits minimum noise temperature of 6.7 K at 32.8 GHz with average noise temperature of 10 K at ambient temperature of 5.5 K. The amplifier gain is 34 dB +/- 0.8 dB. To our knowledge, the Ka- and Q-band amplifiers demonstrate the lowest noise temperature reported so far for InP cryogenic LNAs.
  •  
6.
  • Grahn, Jan, 1962, et al. (författare)
  • III-V HEMTs for cryogenic low noise amplifiers
  • 2020
  • Ingår i: Technical Digest - International Electron Devices Meeting, IEDM. - 0163-1918. ; 2020-December, s. 25.6.1-25.6.4
  • Konferensbidrag (refereegranskat)abstract
    • The InP HEMT is the preferred transistor technology for cryogenic low-noise amplification from 1 GHz up to 200 GHz. The InP HEMT shows its superiority at temperatures 5 to 15 K and technology development must be made with knowledge about the special circumstances occurring in III- V materials and device operating under cryogenic conditions. We report on how to electrically stabilize the cryogenic two-finger HEMT at low temperature making it possible to design low-noise amplifiers with state of the art noise performance up to mm-wave. We also demonstrate recent progress on optimizing the InP HEMT for cryogenic low-noise amplifier operation below 1 mW dc power dissipation, of interest for qubit readout electronics.
  •  
7.
  • Gustafsson, Martin, 1979, et al. (författare)
  • Thermal properties of charge noise sources
  • 2013
  • Ingår i: Physical Review B - Condensed Matter and Materials Physics. - 2469-9950 .- 2469-9969. ; 88:24, s. Art. no. 245410-
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the temperature and bias dependence of single-electron transistors (SETs) in a dilutionrefrigerator show that charge noise increases linearly with refrigerator temperature above a voltage-dependentthreshold temperature, and that its low-temperature saturation is due to SET self-heating. We show further thatthe two-level fluctuators responsible for charge noise are in strong thermal contact with the electrons in the SET,which can be at a much higher temperature than the substrate. We suggest that the noise is caused by electronstunneling between the SET metal and nearby potential wells.
  •  
8.
  • Harrysson Rodrigues, Isabel, 1993, et al. (författare)
  • Angular Dependence of InP High Electron Mobility Transistors for Cryogenic Low Noise Amplifiers under a magnetic field
  • 2019
  • Ingår i: IIS UTokyo SYMPOSIUM No.100.
  • Konferensbidrag (refereegranskat)abstract
    • This work addresses the angular dependence of DC properties in 100nm InP HEMT devices under the influence of applied static magnetic field at 2 K. When kept at an angle 90o towards a magnetic field of 14 T, the maximum output drain current Ids was reduced more than 99 %. A rotation sweep of the transistor revealed a strong angular and B-field dependence on Ids. This was correlated with a reduction in dc transconductance and increase in on-resistance of the transistor. The RF properties of the transistor were tested by measuring an 0.3-14 GHz InP HEMT MMIC low-noise amplifier (LNA) at 2 K kept at an angle 90o towards a magnetic field up to 10 T. The gain and noise temperature were strongly decreased and increased, respectively, already below 1 T. The results show that precise alignment of the cryogenic InP HEMT LNA is crucial in a magnetic field. Even a slight mis-orientation of a few degrees leads to a strong degradation of the gain and noise temperature.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy