SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Powell Lydia C) "

Sökning: WFRF:(Powell Lydia C)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Falster, Daniel, et al. (författare)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • Ingår i: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
2.
  • Jack, Alison A., et al. (författare)
  • The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa
  • 2017
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 157, s. 1955-1962
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic wounds pose an increasingly significant worldwide economic burden (over £1 billion per annum in the UK alone). With the escalation in global obesity and diabetes, chronic wounds will increasingly be a significant cause of morbidity and mortality. Cellulose nanofibrils (CNF) are highly versatile and can be tailored with specific physical properties to produce an assortment of three-dimensional structures (hydrogels, aerogels or films), for subsequent utilization as wound dressing materials. Growth curves using CNF (diameter <20 nm) in suspension demonstrated an interesting dose-dependent inhibition of bacterial growth. In addition, analysis of biofilm formation (Pseudomonas aeruginosa PAO1) on nanocellulose aerogels (20 g/m2) revealed significantly less biofilm biomass with decreasing aerogel porosity and surface roughness. Importantly, virulence factor production by P. aeruginosa in the presence of nanocellulose materials, quantified for the first time, was unaffected (p > 0.05) over 24 h. These data demonstrate the potential of nanocellulose materials in the development of novel dressings that may afford significant clinical potential.
  •  
3.
  • Jack, Alison A, et al. (författare)
  • Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development.
  • 2019
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 20:8, s. 2953-2961
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanofibrils (CNFs) from wood pulp are a renewable material possessing advantages for biomedical applications because of their customizable porosity, mechanical strength, translucency, and environmental biodegradability. Here, we investigated the growth of multispecies wound biofilms on CNF formulated as aerogels and films incorporating the low-molecular-weight alginate oligosaccharide OligoG CF-5/20 to evaluate their structural and antimicrobial properties. Overnight microbial cultures were adjusted to 2.8 × 109 colony-forming units (cfu) mL-1 in Mueller Hinton broth and growth rates of Pseudomonas aeruginosa PAO1 and Staphylococcus aureus 1061A monitored for 24 h in CNF dispersions sterilized by γ-irradiation. Two CNF formulations were prepared (20 g m-2) with CNF as air-dried films or freeze-dried aerogels, with or without incorporation of an antimicrobial alginate oligosaccharide (OligoG CF-5/20) as a surface coating or bionanocomposite, respectively. The materials were structurally characterized by scanning electron microscopy (SEM) and laser profilometry (LP). The antimicrobial properties of the formulations were assessed using single- and mixed-species biofilms grown on the materials and analyzed using LIVE/DEAD staining with confocal laser scanning microscopy (CLSM) and COMSTAT software. OligoG-CNF suspensions significantly decreased the growth of both bacterial strains at OligoG concentrations >2.58% (P < 0.05). SEM showed that aerogel-OligoG bionanocomposite formulations had a more open three-dimensional structure, whereas LP showed that film formulations coated with OligoG were significantly smoother than untreated films or films incorporating PEG400 as a plasticizer (P < 0.05). CLSM of biofilms grown on films incorporating OligoG demonstrated altered biofilm architecture, with reduced biomass and decreased cell viability. The OligoG-CNF formulations as aerogels or films both inhibited pyocyanin production (P < 0.05). These novel CNF formulations or bionanocomposites were able to modify bacterial growth, biofilm development, and virulence factor production in vitro. These data support the potential of OligoG and CNF bionanocomposites for use in biomedical applications where prevention of infection or biofilm growth is required.
  •  
4.
  • Powell, Lydia C., et al. (författare)
  • An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings
  • 2016
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 137, s. 191-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocellulose from wood is a novel biomaterial, which is highly fibrillated at the nanoscale. This affords the material a number of advantages, including self-assembly, biodegradability and the ability to absorb and retain moisture, which highlights its potential usefulness in clinical wound-dressing applications. In these in vitro studies, the wound pathogen Pseudomonas aeruginosa PAO1 was used to assess the ability of two nanocellulose materials to impair bacterial growth (<48 h). The two nanocelluloses had a relatively small fraction of residual fibres (<4%) and thus a large fraction of nanofibrils (widths <20 nm). Scanning electron microscopy and confocal laser scanning microscopy imaging demonstrated impaired biofilm growth on the nanocellulose films and increased cell death when compared to a commercial control wound dressing, Aquacel®. Nanocellulose suspensions inhibited bacterial growth, whilst UV-vis spectrophotometry and laser profilometry also revealed the ability of nanocellulose to form smooth, translucent films. Atomic force microscopy studies of the surface properties of nanocellulose demonstrated that PAO1 exhibited markedly contrasting morphology when grown on the nanocellulose film surfaces compared to an Aquacel® control dressing (p < 0.05). This study highlights the potential utility of these biodegradable materials, from a renewable source, for wound dressing applications in the prevention and treatment of biofilm development.
  •  
5.
  • Rees, Adam, et al. (författare)
  • 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications
  • 2015
  • Ingår i: BioMed Research International. - : Hindawi Limited. - 2314-6133 .- 2314-6141. ; 2015
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy