SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pozzati Gabriele) "

Sökning: WFRF:(Pozzati Gabriele)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bryant, Patrick, et al. (författare)
  • Improved prediction of protein-protein interactions using AlphaFold2
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting the structure of interacting protein chains is a fundamental step towards understanding protein function. Unfortunately, no computational method can produce accurate structures of protein complexes. AlphaFold2, has shown unprecedented levels of accuracy in modelling single chain protein structures. Here, we apply AlphaFold2 for the prediction of heterodimeric protein complexes. We find that the AlphaFold2 protocol together with optimised multiple sequence alignments, generate models with acceptable quality (DockQ >= 0.23) for 63% of the dimers. From the predicted interfaces we create a simple function to predict the DockQ score which distinguishes acceptable from incorrect models as well as interacting from non-interacting proteins with state-of-art accuracy. We find that, using the predicted DockQ scores, we can identify 51% of all interacting pairs at 1% FPR. Predicting the structure of protein complexes is extremely difficult. Here, authors apply AlphaFold2 with optimized multiple sequence alignments to model complexes of interacting proteins, enabling prediction of both if and how proteins interact with state-of-art accuracy.
  •  
2.
  • Bryant, Patrick, et al. (författare)
  • Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • AlphaFold can predict the structure of single- and multiple-chain proteins with very high accuracy. However, the accuracy decreases with the number of chains, and the available GPU memory limits the size of protein complexes which can be predicted. Here we show that one can predict the structure of large complexes starting from predictions of subcomponents. We assemble 91 out of 175 complexes with 10–30 chains from predicted subcomponents using Monte Carlo tree search, with a median TM-score of 0.51. There are 30 highly accurate complexes (TM-score ≥0.8, 33% of complete assemblies). We create a scoring function, mpDockQ, that can distinguish if assemblies are complete and predict their accuracy. We find that complexes containing symmetry are accurately assembled, while asymmetrical complexes remain challenging. The method is freely available and accesible as a Colab notebook https://colab.research.google.com/github/patrickbryant1/MoLPC/blob/master/MoLPC.ipynb.
  •  
3.
  • Burke, David F., et al. (författare)
  • Towards a structurally resolved human protein interaction network
  • 2023
  • Ingår i: Nature Structural & Molecular Biology. - : Springer Science and Business Media LLC. - 1545-9993 .- 1545-9985. ; 30:2, s. 216-225
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular functions are governed by molecular machines that assemble through protein-protein interactions. Their atomic details are critical to studying their molecular mechanisms. However, fewer than 5% of hundreds of thousands of human protein interactions have been structurally characterized. Here we test the potential and limitations of recent progress in deep-learning methods using AlphaFold2 to predict structures for 65,484 human protein interactions. We show that experiments can orthogonally confirm higher-confidence models. We identify 3,137 high-confidence models, of which 1,371 have no homology to a known structure. We identify interface residues harboring disease mutations, suggesting potential mechanisms for pathogenic variants. Groups of interface phosphorylation sites show patterns of co-regulation across conditions, suggestive of coordinated tuning of multiple protein interactions as signaling responses. Finally, we provide examples of how the predicted binary complexes can be used to build larger assemblies helping to expand our understanding of human cell biology.
  •  
4.
  • Pozzati, Gabriele, 1989- (författare)
  • Deep learning solutions to protein quaternary structure
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Interactions between proteins are directly involved in most biological processes and are essential for the correct functioning of every form of life. The nature of protein-protein interactions allows functional assemblies of hundreds of protein chains. Given the enormous complexity and the pivotal role of protein interactions in life’s mechanics, the necessity to obtain a complete comprehension of such mechanisms is just as big as the challenge to achieve such knowledge. In the last few decades, experimental procedures constantly improved, dramatically increasing the available structural data for protein interactions. Unfortunately, experimental methods require a lot of time and resources and cannot always be applied with the same degree of success. Several computational methods have been developed in parallel with experimental procedures to overcome such limitations. Therefore, this thesis focused on screening existing computational methods and adopting them to improve the overall accuracy in solving structures of protein-complexes. In the first paper, I propose a simple rigid-body docking framework to test several interface predictors and their ability to drive a protein-protein docking procedure. Next, in the second paper, I display a method to adapt the trRosetta deep neural network to predict inter-residues distances and dihedral angle constraints for full protein complexes. The same concept is then improved in the third paper with FoldDock, an adaptation of Alphafold2 to work on multiple protein sequences and produce the corresponding complex. Finally, in the fourth paper, the FoldDock pipeline is applied to a large dataset of protein pairwise interactions derived from the hu.MAP and HuRI datasets, resulting in the characterization of more than 3000 high-confidence structural models.
  •  
5.
  • Pozzati, Gabriele, et al. (författare)
  • Limits and potential of combined folding and docking
  • 2022
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 38:4, s. 954-961
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: In the last decade, de novo protein structure prediction accuracy for individual proteins has improved significantly by utilising deep learning (DL) methods for harvesting the co-evolution information from large multiple sequence alignments (MSAs). The same approach can, in principle, also be used to extract information about evolutionary-based contacts across protein-protein interfaces. However, most earlier studies have not used the latest DL methods for inter-chain contact distance prediction. This article introduces a fold-and-dock method based on predicted residue-residue distances with trRosetta.Results: The method can simultaneously predict the tertiary and quaternary structure of a protein pair, even when the structures of the monomers are not known. The straightforward application of this method to a standard dataset for protein-protein docking yielded limited success. However, using alternative methods for generating MSAs allowed us to dock accurately significantly more proteins. We also introduced a novel scoring function, PconsDock, that accurately separates 98% of correctly and incorrectly folded and docked proteins. The average performance of the method is comparable to the use of traditional, template-based or ab initio shape-complementarity-only docking methods. Moreover, the results of conventional and fold-and-dock approaches are complementary, and thus a combined docking pipeline could increase overall docking success significantly. This methodology contributed to the best model for one of the CASP14 oligomeric targets, H1065.
  •  
6.
  • Pozzati, Gabriele, et al. (författare)
  • Scoring of protein-protein docking models utilizing predicted interface residues
  • 2022
  • Ingår i: Proteins. - : Wiley. - 0887-3585 .- 1097-0134. ; 90:7, s. 1493-1505
  • Tidskriftsartikel (refereegranskat)abstract
    • Scoring docking solutions is a difficult task, and many methods have been developed for this purpose. In docking, only a handful of the hundreds of thousands of models generated by docking algorithms are acceptable, causing difficulties when developing scoring functions. Today's best scoring functions can significantly increase the number of top-ranked models but still fail for most targets. Here, we examine the possibility of utilizing predicted interface residues to score docking models generated during the scan stage of a docking algorithm. Many methods have been developed to infer the regions of a protein surface that interact with another protein, but most have not been benchmarked using docking algorithms. This study systematically tests different interface prediction methods for scoring >300.000 low-resolution rigid-body template free docking decoys. Overall we find that contact-based interface prediction by BIPSPI is the best method to score docking solutions, with >12% of first ranked docking models being acceptable. Additional experiments indicated precision as a high-importance metric when estimating interface prediction quality, focusing on docking constraints production. Finally, we discussed several limitations for adopting interface predictions as constraints in a docking protocol.
  •  
7.
  • Quaglia, Federica, et al. (författare)
  • DisProt in 2022 : improved quality and accessibility of protein intrinsic disorder annotation
  • 2022
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 50:D1, s. D480-D487
  • Tidskriftsartikel (refereegranskat)abstract
    • The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy