SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prajapati Bharat) "

Sökning: WFRF:(Prajapati Bharat)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khan, M. T., et al. (författare)
  • Identification of Gender-Specific Molecular Differences in Glioblastoma (GBM) and Low-Grade Glioma (LGG) by the Analysis of Large Transcriptomic and Epigenomic Datasets
  • 2021
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences in the incidence and outcome of glioma between males and females are well known, being more striking for glioblastoma (GB) than low-grade glioma (LGG). The extensive and well-annotated data in publicly available databases enable us to analyze the molecular basis of these differences at a global level. Here, we have analyzed The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases to identify molecular indicators for these gender-based differences by different methods. Based on the nature of data available/accessible, the transcriptomic profile was studied in TCGA by using DeSeq2 and in CGGA by T-test, after correction based. Only IDH1 wild-type tumors were studied in CGGA. Using weighted gene co-expression network analysis (WGCNA), network analysis was done, followed by the assessment of modular differential connectivity. Differentially affected signaling pathways were identified. The gender-based effects of differentially expressed genes on survival were determined. DNA methylation was studied as an indicator of gender-based epigenetic differences. The results clearly showed gender-based differences in both GB and LGG, whatever method or database was used. While there were differences in the results obtained between databases and methods used, some major signaling pathways such as Wnt signaling and pathways involved in immune processes and the adaptive immune response were common to different assessments. There was also a differential gender-based influence of several genes on survival. Also, the autosomal genes NOX, FRG1BP, and AL354714.2 and X-linked genes such as PUDP, KDM6A, DDX3X, and SYAP1 had differential DNA methylation and expression profile in male and female GB, while for LGG, these included autosomal genes such as CNIH3 and ANKRD11 and X-linked genes such as KDM6A, MAOB, and EIF2S3. Some, such as FGF13 and DDX3X, have earlier been shown to have a role in tumor behavior, though their dimorphic effects in males and females have not been identified. Our study thus identifies several crucial differences between male and female glioma, which could be validated further. It also highlights that molecular studies without consideration of gender can obscure critical elements of biology and emphasizes the importance of parallel but separate analyses of male and female glioma.
  •  
2.
  • Arora, H., et al. (författare)
  • Potential role of lncRNA in impairing cellular properties of human neural progenitor cells following exposure to Zika virus E protein
  • 2023
  • Ingår i: Experimental Neurology. - 0014-4886. ; 368
  • Tidskriftsartikel (refereegranskat)abstract
    • Zika virus (ZIKV) infection during the first trimester of the pregnancy may lead to Congenital zika syndrome in the neonates. The viral infection hampers foetal brain development and causes microcephaly. Human neural progenitor cells (hNPCs) play an important role in brain development, however they are highly susceptible to ZIKV infection. In this study, we elucidated the molecular mechanisms that lead to cellular alterations in hNPCs due to ZIKV E-protein. We investigated proliferation, differentiation, migration and inflammation in hNPCs, which may lead to microcephaly. In our study, we found that ZIKV E-protein causes cell cycle arrest, decrease in proliferation and increase in mitotic length of the dividing hNPCs. We observed CyclinD1 and upstream molecules (p21 and p53) of the pathway are dysregulated, and intracellular calcium at basal level as well as upon ATP stimulation were reduced following over expression of ZIKV E-protein. ZIKV E-protein transfected hNPCs exhibited pre-mature differentiation with pro-neural genes upregulated. Furthermore, ZIKV E-protein disrupted migrational properties of hNPCs and caused elevated levels of inflammatory chemokines and cytokines. To gain insights into molecular mechanisms of these effects on hNPCs, we explored the possible involvement of long non coding RNAs in ZIKV neuropathogenesis. We have shortlisted lncRNAs associated with differentially expressed genes from publicly available transcriptomic data and found some of those lncRNAs are differentially expressed upon E-protein transfection of hNPCs. Gene ontology analysis suggest these lncRNAs play an important role in regulation of viral life cycle, host's defence response and cell proliferation.
  •  
3.
  • Bandaru, Sashidar, et al. (författare)
  • Filamin A increases aggressiveness of human neuroblastoma.
  • 2022
  • Ingår i: Neuro-oncology Advances. - : Oxford University Press (OUP). - 2632-2498. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The actin-binding protein filamin A (FLNA) regulates oncogenic signal transduction important for tumor growth, but the role of FLNA in the progression of neuroblastoma (NB) has not been explored.We analyzed FLNA mRNA expression in the R2 NB-database and FLNA protein expression in human NB tumors. We then silenced FLNA expression in human SKNBE2 and IMR32 NB cells by lentiviral vector encoding shRNA FLNA and assayed the cells for proliferation, migration, colony, spheroid formation, and apoptosis. SKNBE2 xenografts expressing or lacking FLNA in BALB/c nude mice were analyzed by both routine histopathology and immunohistochemistry.We observed shorter patient survival with higher expression of FLNA mRNA than patients with lower FLNA mRNA expression, and high-risk NB tumors expressed higher FLNA levels. Overexpression of FLNA increased proliferation of SH-SY5 NB cells. NB cell lines transfected with siRNA FLNA proliferated and migrated less, expressed lower levels of phosphorylated AKT and ERK1/2, formed smaller colonies and spheroids, as well as increased apoptosis. After inoculation of SKNBE2 cells infected with lentivirus expressing shRNA FLNA, size of NB tumors and number of proliferating cells were decreased. Furthermore, we identified STAT3 as an interacting partner of FLNA. Silencing FLNA mRNA reduced levels of NF-κB, STAT3 and MYCN, and increased levels of p53 and cleaved caspase 3.Inhibition of FLNA impaired NB cell signaling and function and reduced NB tumor size in vivo, suggesting that drugs targeting either FLNA or its interaction with STAT3 may be useful in the treatment of NB.
  •  
4.
  • Mahale, Sagar, et al. (författare)
  • HnRNPK maintains single strand RNA through controlling double-strand RNA in mammalian cells.
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Although antisense transcription is a widespread event in the mammalian genome, double-stranded RNA (dsRNA) formation between sense and antisense transcripts is very rare and mechanisms that control dsRNA remain unknown. By characterizing the FGF-2 regulated transcriptome in normal and cancer cells, we identified sense and antisense transcripts IER3 and IER3-AS1 that play a critical role in FGF-2 controlled oncogenic pathways. We show that IER3 and IER3-AS1 regulate each other's transcription through HnRNPK-mediated post-transcriptional regulation. HnRNPK controls the mRNA stability and colocalization of IER3 and IER3-AS1. HnRNPK interaction with IER3 and IER3-AS1 determines their oncogenic functions by maintaining them in a single-stranded form. hnRNPK depletion neutralizes their oncogenic functions through promoting dsRNA formation and cytoplasmic accumulation. Intriguingly, hnRNPK loss-of-function and gain-of-function experiments reveal its role in maintaining global single- and double-stranded RNA. Thus, our data unveil the critical role of HnRNPK in maintaining single-stranded RNAs and their physiological functions by blocking RNA-RNA interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy