SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pratsinis A) "

Sökning: WFRF:(Pratsinis A)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sotiriou, Georgios A., et al. (författare)
  • Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields
  • 2013
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 25:22, s. 4603-4612
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanoparticles can be effectively used in non- or minimally invasive therapy of tumors exploiting their plasmonic photothermal effect. Here, hybrid plasmonicmagnetic Ag/Fe2O3 nanoparticles are made by flame aerosol technology. These nanoparticles can be in situ encapsulated with an amorphous nanothin SiO2 film to facilitate their dispersion and block any toxicity from Ag/Fe2O3. Detailed physicochemical characterization, including electron microscopy, electron dispersive X-ray spectroscopy, and X-ray diffraction, is performed. Furthermore, their magnetic properties are characterized in detail by monitoring their hysteresis, first-order-reversal-curves, and isothermal remanent magnetization. Finally, the effect of SiO2 and Agcontent on the specific absorption rate (SAR) of the hybrid Ag/Fe2O3 nanoparticles is investigated. The obtained understanding will help the rational design and engineering of multifunctional hybrid nanoprobes targeting specific biomedical applications.
  •  
2.
  • Hilty, F. M., et al. (författare)
  • Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications
  • 2009
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 20:47
  • Tidskriftsartikel (refereegranskat)abstract
    • Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe(2)O(4))nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.
  •  
3.
  •  
4.
  • Sotiriou, Georgios A., et al. (författare)
  • Hybrid, Silica-Coated, Janus-Like Plasmonic-Magnetic Nanoparticles
  • 2011
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 23:7, s. 1985-1992
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid plasmonic-magnetic nanoparticles possess properties that are attractive in bioimaging, targeted drug delivery, in vivo diagnosis, and therapy. The stability and toxicity, however, of such nanoparticles challenge their safe use today. Here, biocompatible, SiO(2)-coated, Janus-like Ag/Fe(2)O(3) nanoparticles are prepared by one-step, scalable flame aerosol technology. A nanothin SiO(2) shell around these multifunctional nanoparticles leaves intact their morphology and magnetic and plasmonic properties but minimizes the release of toxic Ag(+) ions from the nanosilver surface and its direct contact with live cells. Furthermore, this silica shell hinders flocculation and allows for easy dispersion of such nanoparticles in aqueous and biological buffer (PBS) solutions without any extra fiinctionalization step. As a result, these hybrid particles exhibited no cytotoxicity during bioimaging and remained stable in suspension with no signs of agglomeration and sedimentation or settling. Their performance as biomarkers was explored by selectively binding them with live tagged Raji and HeLa cells enabling their detection under dark-field illumination. Therefore, these SiO(2)-coated Ag/Fe(2)O(3) nanoparticles do not exhibit the limiting physical properties of each individual component but retain their desired functionalities facilitating thus, the safe use of such hybrid nanoparticles in bioapplications.
  •  
5.
  • Sotiriou, Georgios A., et al. (författare)
  • Nanosilver on nanostructured silica : Antibacterial activity and Ag surface area
  • 2011
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 170:2-3, s. 547-554
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. (C) 2011 Elsevier B.V. All rights reserved.
  •  
6.
  • Sotiriou, Georgios A., et al. (författare)
  • Non-Toxic Dry-Coated Nanosilver for Plasmonic Biosensors
  • 2010
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 20:24, s. 4250-4257
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasmonic properties of noble metals facilitate their use for in vivo bio-applications such as targeted drug delivery and cancer cell therapy. Nanosilver is best suited for such applications as it has the lowest plasmonic losses among all such materials in the UV-visible spectrum. Its toxicity, however, can destroy surrounding healthy tissues and thus, hinders its safe use. Here, that toxicity against a model biological system (Escherichia coli) is "cured" or blocked by coating nanosilver hermetically with a about 2 nm thin SiO(2) layer in one-step by a scalable flame aerosol method followed by swirl injection of a silica precursor vapor (hexamethyldisiloxane) without reducing the plasmonic performance of the enclosed or encapsulated silver nanoparticles (20-40 nm in diameter as determined by X-ray diffraction and microscopy). This creates the opportunity to safely use powerful nanosilver for intracellular bio-applications. The label-free biosensing and surface biofunctionalization of these ready-to-use, non-toxic (benign) Ag nanoparticles is presented by measuring the adsorption of bovine serum albumin (BSA) in a model sensing experiment. Furthermore, the silica coating around nanosilver prevents its agglomeration or flocculation (as determined by thermal annealing, optical absorption spectroscopy and microscopy) and thus, enhances its biosensitivity, including bioimaging as determined by dark field illumination.
  •  
7.
  •  
8.
  •  
9.
  • Teleki, A., et al. (författare)
  • Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion
  • 2008
  • Ingår i: Powder Technology. - : Elsevier BV. - 0032-5910 .- 1873-328X. ; 181:3, s. 292-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential of high-pressure dispersion (HPD) and dynamic light scattering (DLS) is explored for rapid and quantitative estimation of the extent of particle aggregation and agglomeration by analyzing the entire particle size distribution. Commercially available and tailor-made TiO2 particles by flame spray pyrolysis (FSP) were characterized by X-ray diffraction, nitrogen adsorption and transmission electron microscopy (TEM). Volume distributions of these titania particles were obtained by DLS of their electrostatically stabilized (with Na4P2O7) aqueous suspensions. Dispersing these suspensions through a nozzle at 200 to 1400 bar reduced the size of agglomerates (particles bonded by weak physical forces) resulting in bimodal size distributions composed of their constituent primary particles and aggregates (particles bonded by strong chemical or sinter forces). Sintering FSP-made particles from 200 to 800 degrees C for 4 h progressively increased the minimum primary particle size (by grain growth) and aggregate size (by neck growth and phase transformation). (c) 2007 Elsevier B.V. All rights reserved.
  •  
10.
  • Teleki, A, et al. (författare)
  • Flame-coating of titania particles with silica
  • 2005
  • Ingår i: Journal of Materials Research. - Swiss Fed Inst Technol, Particle Technol Lab, Inst Proc Engn, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland. Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Inorgan Chem Lab, CH-8093 Zurich, Switzerland.. - 0884-2914 .- 2044-5326. ; 20:5, s. 1336-1347
  • Tidskriftsartikel (refereegranskat)abstract
    • Silica/titania composite particles were prepared by co-oxidation of titanium-tetra-isopropoxide and hexamethyldisiloxane in a co-flow diffusion flame reactor. The influence of precursor composition on product powder characteristics was studied by x-ray diffraction, nitrogen adsorption, electron microscopy, elemental mapping, and energy-dispersive x-ray analysis. The flame temperature was measured by Fourier transform infrared spectroscopy. The evolution of composite particle morphology from ramified agglomerates to spot- or fully coated particles was investigated by thermophoretic sampling and transmission/scanning electron microscopy. At 40-60 wt% TiO2, particles with segregated regions of silica and titania were formed, while at 80 wt% TiO2 rough silica coatings were obtained. Rapid flame-quenching with a critical flow nozzle at 5 cm above the burner nearly halved the product particle size, changed its crystallinity from pure anatase to mostly rutile and resulted in smooth silica coatings on particles containing 80 wt% TiO2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy