SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prehn C) "

Sökning: WFRF:(Prehn C)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Galluzzi, L, et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.
  • 2009
  • Ingår i: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 16:8, s. 1093-107
  • Forskningsöversikt (refereegranskat)abstract
    • Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
  •  
5.
  •  
6.
  •  
7.
  • Guida, Florence, et al. (författare)
  • The blood metabolome of incident kidney cancer: A case-control study nested within the MetKid consortium
  • 2021
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLOS). - 1549-1277 .- 1549-1676. ; 18:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Excess bodyweight and related metabolic perturbations have been implicated in kidney cancer aetiology, but the specific molecular mechanisms underlying these relationships are poorly understood. In this study, we sought to identify circulating metabolites that predispose kidney cancer and to evaluate the extent to which they are influenced by body mass index (BMI).Methods and findings: We assessed the association between circulating levels of 1,416 metabolites and incident kidney cancer using pre-diagnostic blood samples from up to 1,305 kidney cancer case–control pairs from 5 prospective cohort studies. Cases were diagnosed on average 8 years after blood collection. We found 25 metabolites robustly associated with kidney cancer risk. In particular, 14 glycerophospholipids (GPLs) were inversely associated with risk, including 8 phosphatidylcholines (PCs) and 2 plasmalogens. The PC with the strongest association was PC ae C34:3 with an odds ratio (OR) for 1 standard deviation (SD) increment of 0.75 (95% confidence interval [CI]: 0.68 to 0.83, p = 2.6 × 10−8). In contrast, 4 amino acids, including glutamate (OR for 1 SD = 1.39, 95% CI: 1.20 to 1.60, p = 1.6 × 10−5), were positively associated with risk. Adjusting for BMI partly attenuated the risk association for some—but not all—metabolites, whereas other known risk factors of kidney cancer, such as smoking and alcohol consumption, had minimal impact on the observed associations. A mendelian randomisation (MR) analysis of the influence of BMI on the blood metabolome highlighted that some metabolites associated with kidney cancer risk are influenced by BMI. Specifically, elevated BMI appeared to decrease levels of several GPLs that were also found inversely associated with kidney cancer risk (e.g., −0.17 SD change [ßBMI] in 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) levels per SD change in BMI, p = 3.4 × 10−5). BMI was also associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10−3). While our results were robust across the participating studies, they were limited to study participants of European descent, and it will, therefore, be important to evaluate if our findings can be generalised to populations with different genetic backgrounds.Conclusions: This study suggests a potentially important role of the blood metabolome in kidney cancer aetiology by highlighting a wide range of metabolites associated with the risk of developing kidney cancer and the extent to which changes in levels of these metabolites are driven by BMI - the principal modifiable risk factor of kidney cancer.
  •  
8.
  •  
9.
  • Crivello, M., et al. (författare)
  • Vascular regression precedes motor neuron loss in the FUS (1-359) ALS mouse model
  • 2019
  • Ingår i: Disease Models and Mechanisms. - : Company of Biologists Ltd. - 1754-8403 .- 1754-8411. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) presents a poorly understood pathogenesis. Evidence from patients and mutant SOD1 mouse models suggests vascular damage may precede or aggravate motor dysfunction in ALS. We have previously shown angiogenin (ANG) treatment enhances motor neuron survival, delays motor dysfunction and prevents vascular regression in the SOD1G93A ALS model. However, the existence of vascular defects at different stages of disease progression remains to be established in other ALS models. Here, we assessed vascular integrity in vivo throughout different disease stages, and investigated whether ANG treatment reverses vascular regression and prolongs motor neuron survival in the FUS (1-359) mouse model of ALS. Lumbar spinal cord tissue was collected from FUS (1-359) and non-transgenic control mice at postnatal day (P)50, P90 and P120. We found a significant decrease in vascular network density in lumbar spinal cords from FUS (1-359) mice by day 90, at which point motor neuron numbers were unaffected. ANG treatment did not affect survival or counter vascular regression. Endogenous Ang1 and Vegf expression were unchanged at P50 and P90; however, we found a significant decrease in miRNA 126 at P50, indicating vascular integrity in FUS mice may be compromised via an alternative pathway. Our study demonstrates that vascular regression occurs before motor neuron degeneration in FUS (1-359) mice, and highlights that heterogeneity in responses to novel ALS therapeutics can already be detected in preclinical mouse models of ALS.
  •  
10.
  • Floegel, A., et al. (författare)
  • Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam
  • 2013
  • Ingår i: European Journal of Clinical Nutrition. - : Springer Science and Business Media LLC. - 0954-3007 .- 1476-5640. ; 67:10, s. 1100-1108
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND/OBJECTIVE: Serum metabolites have been linked to higher risk of chronic diseases but determinants of serum metabolites are not clear. We aimed to investigate the association between habitual diet as a modifiable risk factor and relevant serum metabolites. SUBJECTS/METHODS: This cross-sectional study comprised 2380 EPIC-Potsdam participants. Intake of 45 food groups was assessed by food frequency questionnaire and concentrations of 127 serum metabolites were measured by targeted metabolomics. Reduced rank regression was used to find dietary patterns that explain the maximum variation of metabolites. RESULTS: In the multivariable-adjusted model, the proportion of explained variation by habitual diet was ranked as follows: acyl-alkyl-phosphatidylcholines (5.7%), sphingomyelins (5.1%), diacyl-phosphatidylcholines (4.4%), lyso-phosphatidylcholines (4.1%), acylcarnitines (3.5%), amino acids (2.2%) and hexose (1.6%). A pattern with high intake of butter and low intake of margarine was related to acylcarnitines, acyl-alkyl-phosphatidylcholines, lyso-phosphatidylcholines and hydroxy-sphingomyelins, particularly with saturated and monounsaturated fatty acid side chains. A pattern with high intake of red meat and fish and low intake of whole-grain bread and tea was related to hexose and phosphatidylcholines. A pattern consisting of high intake of potatoes, dairy products and cornflakes particularly explained methionine and branched chain amino acids. Dietary patterns related to type 2 diabetes-relevant metabolites included high intake of red meat and low intake of whole-grain bread, tea, coffee, cake and cookies, canned fruits and fish. CONCLUSIONS: Dietary patterns characterized by intakes of red meat, whole-grain bread, tea and coffee were linked to relevant metabolites and could be potential targets for chronic disease prevention.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy