SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prein Julia) "

Sökning: WFRF:(Prein Julia)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kukulies, Julia, et al. (författare)
  • Kilometer-Scale Multimodel and Multiphysics Ensemble Simulations of a Mesoscale Convective System in the Lee of the Tibetan Plateau: Implications for Climate Simulations
  • 2023
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 36:17, s. 5963-5987
  • Tidskriftsartikel (refereegranskat)abstract
    • Kilometer-scale climate model simulations are useful tools to investigate past and future changes in extreme precipitation, particularly in mountain regions, where convection is influenced by complex topography and land–atmosphere interactions. In this study, we evaluate simulations of a flood-producing mesoscale convective system (MCS) downstream of the Tibetan Plateau (TP) in the Sichuan basin from a kilometer-scale multimodel and multiphysics ensemble. The aim is to better understand the physical processes that need to be correctly simulated for successfully capturing downstream MCS formation. We assess how the ensemble members simulate these processes and how sensitive the simulations are to different model configurations. The preceding vortex evolution over the TP, its interaction with the jet stream, and water vapor advection into the basin are identified as key processes for the MCS formation. Most modeling systems struggle to capture the interaction between the vortex and jet stream, and perturbing the model physics has little impact, while constraining the large-scale flow by spectral nudging improves the simulation. This suggests that an accurate representation of the large-scale forcing is crucial to correctly simulate the MCS and associated precipitation. To verify whether the identified shortcomings systematically affect the MCS climatology in longer-term simulations, we evaluate a 1-yr WRF simulation and find that the seasonal cycle and spatial distribution of MCSs are reasonably well captured and not improved by spectral nudging. While the simulations of the MCS case highlight challenges in extreme precipitation forecasting, we conclude that these challenges do not systematically affect simulated climatological MCS characteristics.
  •  
2.
  • Prein, Andreas F., et al. (författare)
  • Towards Ensemble-Based Kilometer-Scale Climate Simulations over the Third Pole Region
  • 2022
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tibetan Plateau and its surrounding mountains have an average elevation of 4,400m and a glaciated area of ∼ 100,000km 2 giving it the name “Third Pole (TP) region”. The TP is the headwater of many major rivers in Asia that provide fresh water to hundreds of millions of people. Climate change is altering the energy and water cycle of the TP at a record pace but the future of this region is highly uncertain due to major challenges in simulating weather and climate processes in this complex area. The Convection-Permitting Third Pole (CPTP) project is a Coordinated Regional Downscaling Experiment (CORDEX) Flagship Pilot Study (FPS) that aims to revolutionize our understanding of climate change impacts on the TP through ensemble-based, kilometer-scale climate modeling. Here we present the experimental design and first results from multi-model, multi-physics ensemble simulations of three case studies. The five participating modeling systems show high performance across a range of meteorological situations and are close to having ”observational quality” in simulating precipitation and near-surface temperature. This is partly due to the large differences between observational datasets in this region, which are the leading source of uncertainty in model evaluations. However, a systematic cold bias above 2000m exists in most modeling systems. Model physics sensitivity tests performed with the Weather Research and Forecasting (WRF) model show that planetary boundary layer (PBL) physics and microphysics contribute equally to model uncertainties. Additionally, larger domains result in better model performance. We conclude by describing high-priority research needs and the next steps in the CPTP project.
  •  
3.
  • Steffan, Adrian, et al. (författare)
  • Validation of an open source, remote web-based eye-tracking method (WebGazer) for research in early childhood
  • 2024
  • Ingår i: Infancy. - 1525-0008 .- 1532-7078. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring eye movements remotely via the participant's webcam promises to be an attractive methodological addition to in-person eye-tracking in the lab. However, there is a lack of systematic research comparing remote web-based eye-tracking with in-lab eye-tracking in young children. We report a multi-lab study that compared these two measures in an anticipatory looking task with toddlers using WebGazer.js and jsPsych. Results of our remotely tested sample of 18-27-month-old toddlers (N=125) revealed that web-based eye-tracking successfully captured goal-based action predictions, although the proportion of the goal-directed anticipatory looking was lower compared to the in-lab sample (N=70). As expected, attrition rate was substantially higher in the web-based (42%) than the in-lab sample (10%). Excluding trials based on visual inspection of the match of time-locked gaze coordinates and the participant's webcam video overlayed on the stimuli was an important preprocessing step to reduce noise in the data. We discuss the use of this remote web-based method in comparison with other current methodological innovations. Our study demonstrates that remote web-based eye-tracking can be a useful tool for testing toddlers, facilitating recruitment of larger and more diverse samples; a caveat to consider is the larger drop-out rate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy