SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pringle Kirsty) "

Sökning: WFRF:(Pringle Kirsty)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kirkby, Jasper, et al. (författare)
  • Ion-induced nucleation of pure biogenic particles
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 533:7604, s. 521-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood(1). Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours(2). It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere(3,4), and that ions have a relatively minor role(5). Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded(6,7). Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of a-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
  •  
2.
  • Kudzotsa, Innocent, et al. (författare)
  • Aerosol indirect effects on glaciated clouds. Part I : Model description
  • 2016
  • Ingår i: Quarterly Journal of the Royal Meteorological Society. - : Wiley. - 0035-9009 .- 1477-870X. ; 142:698, s. 1958-1969
  • Tidskriftsartikel (refereegranskat)abstract
    • Various improvements were made to a state-of-the-art aerosol–cloud model and comparison of the model results with observations from field campaigns was performed. The strength of this aerosol–cloud model is in its ability to explicitly resolve all the known modes of heterogeneous cloud droplet activation and ice crystal nucleation. The model links cloud particle activation with the aerosol loading and chemistry of seven different aerosol species. These improvements to the model resulted in more accurate prediction especially of droplet and ice crystal number concentrations in the upper troposphere and enabled the model to directly sift the aerosol indirect effects based on the chemistry and concentration of the aerosols. In addition, continental and maritime cases were simulated for the purpose of validating the aerosol–cloud model and for investigating the critical microphysical and dynamical mechanisms of aerosol indirect effects from anthropogenic solute and solid aerosols, focusing mainly on glaciated clouds. The simulations showed that increased solute aerosols reduced cloud particle sizes by about 5 μm and inhibited warm rain processes. Cloud fractions and their optical thicknesses were increased quite substantially in both cases. Although liquid mixing ratios were boosted, there was however a substantial reduction of ice mixing ratios in the upper troposphere owing to the increase in snow production aloft. These results are detailed in the subsequent parts of this study.
  •  
3.
  • Schmale, Julia, et al. (författare)
  • Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy