SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prinoth B.) "

Sökning: WFRF:(Prinoth B.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Prinoth, B., et al. (författare)
  • An atlas of resolved spectral features in the transmission spectrum of WASP-189 b with MAROON-X
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Exoplanets in the ultra-hot Jupiter regime provide an excellent laboratory for testing the impact of stellar irradiation on the dynamics and chemical composition of gas giant atmospheres. In this study, we observed two transits of the ultra-hot Jupiter WASP-189 b with MAROON-X/Gemini-North to probe its high-altitude atmospheric layers, using strong absorption lines. We derived posterior probability distributions for the planetary and stellar parameters by calculating the stellar spectrum behind the planet at every orbital phase during the transit. This was used to correct the Rossiter- McLaughlin imprint on the transmission spectra. Using differential transmission spectroscopy, we detect strong absorption lines of Ca+, Ba+, Na, Hα, Mg, Fe, and Fe+, providing an unprecedented and detailed view of the atmospheric chemical composition. Ca+ absorption is particularly well suited for analysis through time-resolved narrow-band spectroscopy, owing to its transition lines formed in high-altitude layers. The spectral absorption lines show no significant blueshifts that would indicate high-altitude day-to-night winds, and further analysis is needed to investigate the implications for atmospheric dynamics. These high signal-to-noise observations provide a benchmark data set for testing high-resolution retrievals and the assumptions of atmospheric models. We also simulate observations of WASP-189 b with ANDES/ELT, and show that ANDES will be highly sensitive to the individual absorption lines of a myriad of elements and molecules, including TiO and CO.
  •  
2.
  • Borsato, N. W., et al. (författare)
  • Small but mighty : High-resolution spectroscopy of ultra-hot Jupiter atmospheres with compact telescopes Transmission spectrum of KELT-9 b with Wendelstein’s FOCES spectrograph
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • When observing transmission spectra produced by the atmospheres of ultra-hot Jupiters (UHJs), large telescopes are typically the instrument of choice given the very weak signal of the planet’s atmopshere. The aim of the present study is to demonstrate that, for favourable targets, smaller telescopes are fully capable of conducting high-resolution cross-correlation spectroscopy. We apply the cross-correlation technique to data from the 2.1 m telescope at the Wendelstein Observatory, using its high-resolution spectrograph FOCES, in order to demonstrate its efficacy in resolving the atmosphere of the UHJ KELT-9 b. Using three nights of observations with the FOCES spectrograph and one with the HARPS-N spectrograph, we conduct a performance comparison between FOCES and HARPS-N. This comparison considers both single-transit and combined observations over the three nights. We then consider the potential of 2 m class telescopes by generalising our results to create a transit emulator capable of evaluating the potential of telescopes of this size. With FOCES, we detected seven species in the atmosphere of KELT-9 b: Ti II, Fe I, Fe II, Na I, Mg I, Na II, Cr II, and Sc II. Although HARPS-N surpasses FOCES in performance thanks to the mirror of the TNG, our results reveal that smaller telescope classes are capable of resolving the atmospheres of UHJs given sufficient observing time. This broadens the potential scope of such studies, demonstrating that smaller telescopes can be used to investigate phenomena such as temporal variations in atmospheric signals and the atmospheric loss characteristics of these close-in planets.
  •  
3.
  • Borsato, N. W., et al. (författare)
  • The Mantis Network : III. Expanding the limits of chemical searches within ultra-hot Jupiters: New detections of Ca I, v I, Ti I, Cr I, Ni I, Sr II, Ba II, and Tb II in KELT-9 b
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-correlation spectroscopy is an invaluable tool in the study of exoplanets. However, aliasing between spectral lines makes it vulnerable to systematic biases. This work strives to constrain the aliases of the cross-correlation function to provide increased confidence in the detections of elements in the atmospheres of ultra-hot Jupiters (UHJs) observed with high-resolution spectrographs. We use a combination of archival transit observations of the UHJ KELT-9 b obtained with the HARPS-N and CARMENES spectrographs and show that it is possible to leverage each instrument's strengths to produce robust detections at a substantially reduced signal-to-noise. Aliases that become present at low signal-to-noise regimes are constrained through a linear regression model. We confirm previous detections of H I, Na I, Mg I, Ca II, Sc II, Ti II, Cr II, Fe I, and Fe II, and detect eight new species, Ca I, Cr I, Ni I, Sr II, and Tb II, at the 5δ level, and Ti I, V I, and Ba II above the 3δ level. Ionised terbium (Tb II) has never before been seen in an exoplanet atmosphere. We further conclude that a 5δ threshold may not provide a reliable measure of confidence when used to claim detections, unless the systematics in the cross-correlation function caused by aliases are taken into account.
  •  
4.
  • Prinoth, B., et al. (författare)
  • Time-resolved transmission spectroscopy of the ultra-hot Jupiter WASP-189 b
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 678, s. A182-A182
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-hot Jupiters are tidally locked with their host stars, dividing their atmospheres into a hot dayside and a colder nightside. As the planet moves through transit, different regions of the atmosphere rotate into view, revealing different chemical regimes. Highresolution spectrographs can observe asymmetries and velocity shifts and offer the possibility for time-resolved spectroscopy. The ultra-hot Jupiter WASP-189 b has recently been found to possess a rich transmission spectrum with evidence for atmospheric dynamics and chemical inhomogeneity. In this study, we search for other atoms and molecules in the planet’s transmission spectrum and investigate asymmetric signals. We analysed and combined eight transits of the ultra-hot Jupiter WASP-189 b collected with the HARPS, HARPS-N, ESPRESSO, and MAROON-X high-resolution spectrographs. Using the cross-correlation technique, we searched for neutral and ionised atoms as well as oxides, and we compared the obtained signals to model predictions. We report significant detections for H, Na, Mg, Ca, Ca+, Ti, Ti+, TiO, V, Cr, Mn, Fe, Fe+, Ni, Sr, Sr+, and Ba+. Of these, Sr, Sr+, and Ba+ are detected for the first time in the transmission spectrum of WASP-189 b. In addition, we robustly confirm the detection of titanium oxide based on observations with HARPS and HARPS-N using the follow-up observations performed with MAROON-X and ESPRESSO. By fitting the orbital traces of the detected species by means of time-resolved spectroscopy using a Bayesian framework, we inferred posterior distributions for orbital parameters as well as line shapes. Our results indicate that different species must originate from different regions of the atmosphere to be able to explain the observed time dependence of the signals. Throughout the course of the transit, most signal strengths are expected to increase due to the larger atmospheric scale height at the hotter trailing terminator. For some species, however, we instead observed that the signals weaken, either due to the ionisation of atoms and their ions or the dissociation of molecules on the dayside.
  •  
5.
  • Ahrer, E., et al. (författare)
  • Atmospheric characterization and tighter constraints on the orbital misalignment of WASP-94 A b with HARPS
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 530:3, s. 2749-2759
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high spectral resolution observations of the hot Jupiter WASP-94 A b using the HARPS instrument on ESO’s 3.6-m telescope in La Silla, Chile. We probed for Na absorption in its atmosphere as well as constrained the previously reported misaligned retrograde orbit using the Rossiter–McLaughlin effect. Additionally, we undertook a combined atmospheric retrieval analysis with previously published low-resolution data. We confirm the retrograde orbit as well as constrain the orbital misalignment with our measurement of a projected spin-orbit obliquity of λ = 123.0 ± 3.0°. We find a tentative detection of Na absorption in the atmosphere of WASP-94 A b, independent of the treatment of the Rossiter–McLaughlin effect in our analysis (3.6σ and 4.4σ). We combine our HARPS high-resolution data with low-resolution data from the literature and find that while the posterior distribution of the Na abundance results in a tighter constraint than using a single data set, the detection significance does not improve (3.2σ), which we attribute to degeneracies between the low- and high-resolution data.
  •  
6.
  • Kitzmann, D., et al. (författare)
  • The Mantis network : A standard grid of templates and masks for cross-correlation analyses of ultra-hot Jupiter transmission spectra
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • The atmospheres of ultra-hot Jupiters are highly interesting and unique chemical laboratories. Due to the very high atmospheric temperatures, their chemical composition is dominated by atoms and ions instead of molecules, and the formation of aerosols on their day-sides is unlikely. Thus, for these planets detailed chemical characterisations via the direct detection of elements through high-resolution day-side and transit spectroscopy are possible. This in principle allows the element abundances of these objects to be directly inferred, which may provide crucial constraints on their formation process and evolution history. In the recent past, several chemical species, mostly in the form of atoms and ions, have already been detected using high-resolution spectroscopy in combination with the cross-correlation technique. As part of the Mantis network, we provide a grid of standard templates in this study, designed to be used together with the cross-correlation method. This allows for the straightforward detection of chemical species in the atmospheres of hot extrasolar planets. In total, we calculate high-resolution templates for more than 140 different species across several atmospheric temperatures. In addition to the high-resolution templates, we also provide line masks that just include the position of line peaks and their absorption depths relative to the spectral continuum. A separate version of these line masks also takes potential blending effects with lines of other species into account.
  •  
7.
  • Seidel, Julia V., et al. (författare)
  • Detection of atmospheric species and dynamics in the bloated hot Jupiter WASP-172 b with ESPRESSO
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The population of strongly irradiated Jupiter-sized planets has no equivalent in the Solar System. It is characterised by strongly bloated atmospheres and large atmospheric scale heights. Recent space-based observations of SO2 photochemistry have demonstrated the knowledge that can be gained about Earth's uniqueness from detailed atmospheric studies of these unusual planets. Aims. Here we explore the atmosphere of WASP-172 b, a planet similar in terms of temperature and bloating to the recently studied HD 149026 b. We characterise the atmospheric composition and subsequently the atmospheric dynamics of this prime target. Methods. We observed a particular transit of WASP-172 b in front of its host star with ESO's ESPRESSO spectrograph and analysed the spectra obtained before, during, and after transit. Results. We detect the absorption of starlight by WASP-172 b's atmosphere by sodium (5.6 ) and hydrogen (19.5 ) and obtained a tentative detection of iron (4.1 ). We detect strong yet varying blueshifts, relative to the planetary rest frame, of all of these absorption features. This allows for a preliminary study of the atmospheric dynamics of WASP-172 b. Conclusions. With only one transit, we were able to detect a wide variety of species that clearly track different atmospheric layers with possible jets. WASP-172 b is a prime follow-up target for a more in-depth characterisation with both ground- and space-based observatories. If the detection of Fe is confirmed, this may suggest that radius inflation is an important determinant for the detectability of Fe in hot Jupiters, as several non-detections of Fe have been published for planets that are hotter but less inflated than WASP-172 b.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy