SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prinz Christelle) "

Sökning: WFRF:(Prinz Christelle)

  • Resultat 1-10 av 80
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abariute, Laura, et al. (författare)
  • Uptake of nanowires by human lung adenocarcinoma cells
  • 2019
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor nanowires are increasingly used in optoelectronic devices. However, their effects on human health have not been assessed fully. Here, we investigate the effects of gallium phosphide nanowires on human lung adenocarcinoma cells. Four different geometries of nanowires were suspended in the cell culture for 48 hours. We show that cells internalize the nanowires and that the nanowires have no effect on cell proliferation rate, motility, viability and intracellular ROS levels. By blocking specific internalization pathways, we demonstrate that the nanowire uptake is the result of a combination of processes, requiring dynamin and actin polymerization, which suggests an internalization through macropinocytosis and phagocytosis.
  •  
2.
  • Adolfsson, Karl, et al. (författare)
  • Fluorescent Nanowire Heterostructures as a Versatile Tool for Biology Applications
  • 2013
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 13:10, s. 4728-4732
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowires are increasingly used in biology, as sensors, as injection devices, and us model systems for toxicity studies. Currently, in situ visualization of nanowires in biological media is done using organic dyes, which a;:e prone to photobleaching, or using microscopy methods which either yield poor resolution or require a sophisticated setup. Here we show that inherently fluorescent nanowire axial heterostructnies c:an be used to localize and identify nanowires in cells and tissue; By synthesizing GaP GaInP nanowire heterostructures, with nonfluorescent GaP segments and fluorescent GaInP segments, we created a barcode labeling system enabling the distinction of the nanowire morphological and chemical properties using fluorescence microscopy. The GaInP photoluminescence stability, combined with the fact that the nanowires can be coated with different materials while retaining their fluorescence, make these nanowires promising tools for biological and nanotoxicological studies.
  •  
3.
  • Adolfsson, Karl, et al. (författare)
  • Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function.
  • 2013
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 24:28
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.
  •  
4.
  • Berthing, Trine, et al. (författare)
  • Pulmonary toxicity and translocation of gallium phosphide nanowires to secondary organs following pulmonary exposure in mice
  • 2023
  • Ingår i: Journal of Nanobiotechnology. - 1477-3155. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: III-V semiconductor nanowires are envisioned as being integrated in optoelectronic devices in the near future. However, the perspective of mass production of these nanowires raises concern for human safety due to their asbestos- and carbon nanotube-like properties, including their high aspect ratio shape. Indeed, III-V nanowires have similar dimensions as Mitsui-7 multi-walled carbon nanotubes, which induce lung cancer by inhalation in rats. It is therefore urgent to investigate the toxicological effects following lung exposure to III-V nanowires prior to their use in industrial production, which entails risk of human exposure. Here, female C57BL/6J mice were exposed to 2, 6, and 18 µg (0.12, 0.35 and 1.1 mg/kg bw) of gallium phosphide (III-V) nanowires (99 nm diameter, 3.7 μm length) by intratracheal instillation and the toxicity was investigated 1, 3, 28 days and 3 months after exposure. Mitsui-7 multi-walled carbon nanotubes and carbon black Printex 90 nanoparticles were used as benchmark nanomaterials. Results: Gallium phosphide nanowires induced genotoxicity in bronchoalveolar lavage cells and acute inflammation with eosinophilia observable both in bronchoalveolar lavage and lung tissue (1 and 3 days post-exposure). The inflammatory response was comparable to the response following exposure to Mitsui-7 multi-walled carbon nanotubes at similar dose levels. The nanowires underwent partial dissolution in the lung resulting in thinner nanowires, with an estimated in vivo half-life of 3 months. Despite the partial dissolution, nanowires were detected in lung, liver, spleen, kidney, uterus and brain 3 months after exposure. Conclusion: Pulmonary exposure to gallium phosphide nanowires caused similar toxicological effects as the multi-walled carbon nanotube Mitsui-7. Graphical Abstract: [Figure not available: see fulltext.]
  •  
5.
  • Bunnfors, Kalle, 1989- (författare)
  • Imaging and Spectroscopic Mapping of Blood Cell Activity : Nanoparticles and Neutrophil Extracellular Traps
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Imaging and visualization of cell activity when exposed to nanomaterial are of main importance, when investigating biological response to a wide range of biomaterials from medical implants to smart nanoprobes. The ability to provide molecular and chemical information with spatial resolution in the region of sub-µm leads to increased insight and understanding of these biological challenges. Interdisciplinary collaborative effort may contribute and help solving urgent matters related to the challenges that we globally share. It is necessary to develop powerful tools such as analytical imaging techniques for addressing these urgent issues. This will increase our knowledge from the visualization on the cellular and subcellular level and help designing sustainable, personalized medical nanoprobes. In this thesis, the focus is to investigate the possibilities using the fluorescence microscopy, combined with surface analytical techniques delivering element specific information. Neutrophils are the most abundant immune cell in our bodies. They scavenge the body for threats and are usually among the first ones to find intruders and start the inflammation process. They have several ways of handling a threat, the main three being degranulation, phagocytosis, and neutrophil extracellular traps (NETs). In short, degranulation where granules are released into the extracellular matrix, phagocytosis is the process when for example the bacteria in engulfed by the neutrophil and neutralized. The NETs are when the neutrophil decondense their DNA and throw it out as a net to physically trap the invader and together with reactive oxygen species, proteases, and other antimicrobial molecules. It has been observed that nanoparticles (NP) can trigger NETs and there have been some comparisons between different parameters such as size, geometry, and functionalization. In this thesis we have explored how to measure neutrophil activity by a novel label free and noninvasive method (Paper 1). The NanoEsca, a combined XPS and PEEM instrument, is used to chemically map the neutrophils and NETs. We could clearly observe the NETs in PEEM and XPS mode. Quantum Dots (QDots, CdSe based) was used to trigger NETs. We track down the Quantum Dots with the element specific mapping. In the next paper we further explored how to extract new information with this advanced instrument that is traditionally is used for material- and surface science, and just recently deliver results in imaging and visualization within life sciences. Ultrathin slices of neutrophils where made special focus was given to the research work developing strategies to obtain and extract additional information from inside the neutrophils. These are pilot studies and show great potential to get chemical information in a label free way and is a good complement to fluorescence, SEM and TEM. We then made an in-depth investigation on the mechanisms how nanoparticles interact with neutrophils, with special focus on processes triggering NETs formation. Using QDots as a model system we could show that the NETs release is strongly dependent on the uptake of the nanoparticles. We used fluorescence and TEM to investigate where the QDots uptake and to identify the pattern where they finally end up. We clearly observed them inside vesicles in the inner part of the cell and even within the NETs structure giving proof that the uptake of QDots play an important role of the NETs formation. In the last paper we expanded the study and exposed the cells to Iron Oxide NPs (FeNP) Here we developed a strategy how to alternate the magnetic field control the direction of the NETs. We could manipulate live NETs with a magnetic field and made observations that parts of the NETs are static and some clearly mobile, still with an internal memory to find its initial structure just after release. TEM studies revealed that, like the QDots, the FeNP end up inside the NETs. In conclusion in this thesis work, detailed processes are explored on neutrophils and their NETs formation with new unconventional methods and how neutrophils and nanoparticles interact with respect to NETs. 
  •  
6.
  • Dabkowska, Aleksandra, et al. (författare)
  • Fluid and Highly Curved Model Membranes on Vertical Nanowire Arrays
  • 2014
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 14:8, s. 4286-4292
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensing and manipulating living cells using vertical nanowire devices requires a complete understanding of cell behavior on these substrates. Changes in cell function and phenotype are often triggered by events taking place at the plasma membrane, the properties of which are influenced by local curvature. The nanowire topography can therefore be expected to greatly affect the cell membrane, emphasizing the importance of studying membranes on vertical nanowire arrays. Here, we used supported phospholipid bilayers as a model for biomembranes. We demonstrate the formation of fluid supported bilayers on vertical nanowire forests using self-assembly from vesicles in solution. The bilayers were found to follow the contours of the nanowires to form continuous and locally highly curved model membranes. Distinct from standard flat supported lipid bilayers, the high aspect ratio of the nanowires results in a large bilayer surface available for the immobilization and study of biomolecules. We used these bilayers to bind a membrane-anchored protein as well as tethered vesicles on the nanowire substrate. The nanowire-bilayer platform shown here can be expanded from fundamental studies of lipid membranes on controlled curvature substrates to the development of innovative membrane-based nanosensors.
  •  
7.
  • Dabkowska, Aleksandra, et al. (författare)
  • Surface nanostructures for fluorescence probing of supported lipid bilayers on reflective substrates.
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 7:43, s. 18020-18024
  • Tidskriftsartikel (refereegranskat)abstract
    • The fluorescence interference contrast (FLIC) effect prevents the use of fluorescence techniques to probe the continuity and fluidity of supported lipid bilayers on reflective materials due to a lack of detectable fluorescence. Here we show that adding nanostructures onto reflective surfaces to locally confer a certain distance between the deposited fluorophores and the reflecting surface enables fluorescence detection on the nanostuctures. The nanostructures consist of either deposited nanoparticles or epitaxial nanowires directly grown on the substrate and are designed such that they can support a lipid bilayer. This simple method increases the fluorescence signal sufficiently to enable bilayer fluorescence detection and to observe the recovery of fluorescence after photobleaching in order to assess lipid bilayer formation on any reflective surface.
  •  
8.
  •  
9.
  • Eriksson Linsmeier, Cecilia, et al. (författare)
  • Nanowire Biocompatibility in the Brain - Looking for a Needle in a 3D Stack.
  • 2009
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 9:12, s. 4184-4190
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the brain-tissue response to nanowire implantations in the rat striatum after 1, 6, and 12 weeks using immunohistochemistry. The nanowires could be visualized in the scar by confocal microscopy (through the scattered laser light). For the nanowire-implanted animals, there is a significant astrocyte response at week 1 compared to controls. The nanowires are phagocytized by ED1 positive microglia, and some of them are degraded and/or transported away from the brain.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 80
Typ av publikation
tidskriftsartikel (50)
konferensbidrag (26)
doktorsavhandling (2)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (62)
övrigt vetenskapligt/konstnärligt (18)
Författare/redaktör
Prinz, Christelle (54)
Samuelson, Lars (26)
Prinz, Christelle N. (24)
Montelius, Lars (24)
Suyatin, Dmitry (17)
Kanje, Martin (14)
visa fler...
Schouenborg, Jens (12)
Linke, Heiner (11)
Persson, Henrik (10)
Wallman, Lars (8)
Oredsson, Stina (8)
Lard, Mercy (7)
Adolfsson, Karl (7)
Danielsen, Nils (7)
Hebisch, Elke (6)
Tegenfeldt, Jonas (6)
Anttu, Nicklas (6)
Höök, Fredrik, 1966 (6)
Hjort, Martin (6)
Jörntell, Henrik (5)
Li, Zhen (5)
Abariute, Laura (4)
Hammarin, Greger (4)
Tegenfeldt, Jonas O. (4)
Borgström, Magnus T. (4)
Mårtensson, Thomas (4)
Höök, Fredrik (4)
Nylander, Tommy (3)
Fioretos, Thoas (3)
Hessman, Dan (3)
Perez, Maria Thereza (3)
Beech, Jason (3)
Sjövall, Peter (3)
Volpati, Diogo (3)
Dabkowska, Aleksandr ... (3)
Johansson, Fredrik (2)
Uvdal, Kajsa, Profes ... (2)
Carlberg, Patrick (2)
Svensson, P (2)
Agnarsson, Björn, 19 ... (2)
Pettersson, Lina (2)
Sivakumar, Sudhakar (2)
Gustavsson, Per (2)
Cao, H. (2)
Cedervall, Tommy (2)
Sundberg, M (2)
Johansson, F (2)
Caroff, Philippe (2)
Munita, Roberto (2)
Månsson, A. (2)
visa färre...
Lärosäte
Lunds universitet (74)
Chalmers tekniska högskola (7)
Göteborgs universitet (2)
Linköpings universitet (2)
Linnéuniversitetet (1)
RISE (1)
Språk
Engelska (80)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (42)
Medicin och hälsovetenskap (29)
Teknik (28)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy