SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pritchard Leighton) "

Sökning: WFRF:(Pritchard Leighton)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brueffer, Christian, et al. (författare)
  • Biopython Project Update 2016
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The Biopython Project is a long-running distributed collaborative effort, supported by the Open Bioinformatics Foundation, which develops a freely available Python library for biological computation.We present here details of the latest Biopython release - version 1.66. New features include: extended Bio.KEGG and Bio.Graphics modules to support drawing KEGG pathways with transparency; extended “abi” Bio.SeqIO parser to decode almost all documented fields used by ABIF instruments; a QCPSuperimposer module using the Quaternion Characteristic Polynomial algorithm for superimposing structures to Bio.PDB; and an extended Bio.Entrez module to implement the NCBI Entrez Citation Matching function and to support NCBI XML files with XSD schemas. Additionally we fixed miscellaneous bugs, enhanced our test suite and continued our efforts to abide by the PEP8 coding style guidelines.We are currently preparing a new release – version 1.67 – that will deprecate the ability to compare SeqRecord objects with “==”, which sometimes lead to surprising results. In addition it will feature a new experimental Bio.phenotype module for working with Phenotype Microarray data; updates to Bio.Data toinclude NCBI genetic code table 25, covering Candidate Division SR1 and Gracilibacteria; an update to Bio.Restriction to include the REBASE May 2016 restriction enzyme list; updates to BioSQL to use foreign keys with SQLite3 databases; as well as corrections to the Bio.Entrez module and the MMCIF structure parser.Our website has been migrated from MediaWiki to GitHub Pages and is now under version control. The continuous integration process on GitHub has been enhanced by including external services like Landscape, Quantified Code and Codecov to perform quality review, test coverage analysis and generation of quality metrics.Finally, our range of Docker containers has been greatly enhanced. In addition to a basic container that includes Python 2 and 3 with Biopython and all its dependencies, as well as a BioSQL container, we now also provide two versions of Jupyter notebook containers: a basic one, and a version including the Biopython tutorial as notebooks.
  •  
2.
  • Haas, Brian J., et al. (författare)
  • Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 461:7262, s. 393-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy