SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prockop Darwin) "

Sökning: WFRF:(Prockop Darwin)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Devoto, Marcella, et al. (författare)
  • Univariate and bivariate variance component linkage analysis of a whole-genome scan for loci contributing to bone mineral density
  • 2005
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 13, s. 781-788
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a common condition characterized by reduced skeletal strength and increased susceptibility to fracture. The single major risk factor for osteoporosis is low bone mineral density (BMD) and strong evidence exists that genetic factors are in part responsible for an individual's BMD. A cohort of 40 multiplex Caucasian families selected through a proband with osteoporosis was genotyped for microsatellite markers spaced at an average of 10 cM, and linkage to femoral neck (FN), lumbar spine (LS) and trochanter (TR) BMD was analyzed using univariate and bivariate variance component linkage analysis. Maximum univariate multipoint lod-scores were 2.87 on chromosome 1p36 for FN BMD, 1.89 on 6q27 for TR BMD, and 2.15 on 7p15 for LS BMD. Results of bivariate linkage analysis were highly correlated with those of the univariate analysis, although generally less significant, suggesting the possibility that some of these susceptibility loci may exert pleiotropic effects on multiple skeletal sites.
  •  
2.
  • Sahlman, Janne, et al. (författare)
  • A human COL2A1 gene with an Arg519Cys mutation causes osteochondrodysplasia in transgenic mice.
  • 2004
  • Ingår i: Arthritis and Rheumatism. - : John Wiley & Sons. - 0004-3591 .- 1529-0131. ; 50:10, s. 3153-3160
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: An arginine-to-cysteine substitution at position 519 of the COL2A1 gene causes early generalized osteoarthritis with mild chondrodysplasia in humans. In this study, a human COL2A1 gene with the same mutation was introduced into a murine genome having 1 or no alleles of the murine Col2a1 gene, and the skeletal phenotypes of the transgenic mice were compared with those of control mice.METHODS: Mice with 1 allele of the normal murine Col2a1 gene and 1 allele of the mutated human COL2A1 gene (n = 10), those with no murine Col2a1 gene and 2 alleles of the mutated human COL2A1 gene (n = 13), those with no murine Col2a1 gene and only 1 allele of the mutated COL2A1 gene (n = 9), and normal control mice (n = 11) were studied for skeletal abnormalities, using radiographic imaging and light microscopic analyses of histologic sections. The collagen network of cartilage was also investigated with transmission electron microscopy.RESULTS: At 2 months of age, all transgenic mice had dysplastic changes in their long bones, flattened vertebral bodies, and osteoarthritic changes in their joints. The intervertebral discs of the transgenic animals were degenerated, and their histologic structure was disturbed. The changes were more severe in mice with no murine Col2a1 allele.CONCLUSION: The human COL2A1 gene with the Arg519Cys mutation causes osteochondrodysplasia in mice, as it does in humans.
  •  
3.
  • Sahlman, Janne, et al. (författare)
  • Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen.
  • 2001
  • Ingår i: Spine. - : Lippincott Williams & Wilkins. - 0362-2436 .- 1528-1159. ; 26:23, s. 2558-2565
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY DESIGN: Skeletal tissues of mice with an inactivated allele of the Col2a1 gene for Type II collagen ("heterozygous knockout") were studied.OBJECTIVE: To determine whether a heterozygous inactivation of the Col2a1 gene has a role in the etiology of spine disorders such as disc degeneration.SUMMARY OF BACKGROUND DATA: Mutations in the COL2A1, COL11A1, COL11A2, and COL9A2 genes have been linked to spine disorders. However, the mechanism by which genetic factors lead to disc degeneration still are largely unknown.METHODS: Spine tissues were studied using radiograph analyses; conventional, quantitative, and polarized light microscopy; immunohistochemistry for the major extracellular components, and in situ hybridization for procollagens alpha1(I) and alpha1(II). Voluntary running activity also was monitored in half of the mice.RESULTS: As the findings showed, 1-month-old heterozygous knockout mice had shorter limb bones, skulls, and spines, as well as thicker and more irregular vertebral endplates, which calcified earlier than in the control mice. They also had a lower concentration of glycosaminoglycans in the anulus fibrosus, in the endplates, and in the vertebral bone than the controls. These features in the heterozygous knockout mice were compensated by the age of 15 months. However, the long bones and skulls of the mature heterozygous mice remained shorter than those of the controls. Gene-deficient mice used the running wheel less. However, physical exercise did not induce any marked structural changes in the skeleton.CONCLUSION: Mice with heterozygous knockout of Col2a1 show subtle early skeletal manifestations that bear some resemblance to those of human spine disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy