SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prodan A.) "

Sökning: WFRF:(Prodan A.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • The ALICE experiment at the CERN LHC
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  •  
3.
  • Roman, D., et al. (författare)
  • Big Data Pipelines on the Computing Continuum : Ecosystem and Use Cases Overview
  • 2021
  • Ingår i: Proceedings - IEEE Symposium on Computers and Communications. - : Institute of Electrical and Electronics Engineers Inc..
  • Konferensbidrag (refereegranskat)abstract
    • Organisations possess and continuously generate huge amounts of static and stream data, especially with the proliferation of Internet of Things technologies. Collected but unused data, i.e., Dark Data, mean loss in value creation potential. In this respect, the concept of Computing Continuum extends the traditional more centralised Cloud Computing paradigm with Fog and Edge Computing in order to ensure low latency pre-processing and filtering close to the data sources. However, there are still major challenges to be addressed, in particular related to management of various phases of Big Data processing on the Computing Continuum. In this paper, we set forth an ecosystem for Big Data pipelines in the Computing Continuum and introduce five relevant real-life example use cases in the context of the proposed ecosystem.
  •  
4.
  • Al-Dulaimy, Auday, et al. (författare)
  • The computing continuum : From IoT to the cloud
  • 2024
  • Ingår i: Internet of Things. - : Elsevier B.V.. - 2543-1536 .- 2542-6605. ; 27
  • Tidskriftsartikel (refereegranskat)abstract
    • In the era of the IoT revolution, applications are becoming ever more sophisticated and accompanied by diverse functional and non-functional requirements, including those related to computing resources and performance levels. Such requirements make the development and implementation of these applications complex and challenging. Computing models, such as cloud computing, can provide applications with on-demand computation and storage resources to meet their needs. Although cloud computing is a great enabler for IoT and endpoint devices, its limitations make it unsuitable to fulfill all design goals of novel applications and use cases. Instead of only relying on cloud computing, leveraging and integrating resources at different layers (like IoT, edge, and cloud) is necessary to form and utilize a computing continuum. The layers’ integration in the computing continuum offers a wide range of innovative services, but it introduces new challenges (e.g., monitoring performance and ensuring security) that need to be investigated. A better grasp and more profound understanding of the computing continuum can guide researchers and developers in tackling and overcoming such challenges. Thus, this paper provides a comprehensive and unified view of the computing continuum. The paper discusses computing models in general with a focus on cloud computing, the computing models that emerged beyond the cloud, and the communication technologies that enable computing in the continuum. In addition, two novel reference architectures are presented in this work: one for edge–cloud computing models and the other for edge–cloud communication technologies. We demonstrate real use cases from different application domains (like industry and science) to validate the proposed reference architectures, and we show how these use cases map onto the reference architectures. Finally, the paper highlights key points that express the authors’ vision about efficiently enabling and utilizing the computing continuum in the future.
  •  
5.
  • De Groot, P., et al. (författare)
  • Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time
  • 2020
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 69, s. 502-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Bariatric surgery improves glucose metabolism. Recent data suggest that faecal microbiota transplantation (FMT) using faeces from postbariatric surgery diet-induced obese mice in germ-free mice improves glucose metabolism and intestinal homeostasis. We here investigated whether allogenic FMT using faeces from post-Roux-en-Y gastric bypass donors (RYGB-D) compared with using faeces from metabolic syndrome donors (METS-D) has short-term effects on glucose metabolism, intestinal transit time and adipose tissue inflammation in treatment-naïve, obese, insulin-resistant male subjects. Design: Subjects with metabolic syndrome (n=22) received allogenic FMT either from RYGB-D or METS-D. Hepatic and peripheral insulin sensitivity as well as lipolysis were measured at baseline and 2 weeks after FMT by hyperinsulinaemic euglycaemic stable isotope (2H2-glucose and 2H5-glycerol) clamp. Secondary outcome parameters were changes in resting energy expenditure, intestinal transit time, faecal short-chain fatty acids (SCFA) and bile acids, and inflammatory markers in subcutaneous adipose tissue related to intestinal microbiota composition. Faecal SCFA, bile acids, glycaemic control and inflammatory parameters were also evaluated at 8 weeks. Results: We observed a significant decrease in insulin sensitivity 2 weeks after allogenic METS-D FMT (median rate of glucose disappearance: from 40.6 to 34.0 μmol/kg/min; p<0.01). Moreover, a trend (p=0.052) towards faster intestinal transit time following RYGB-D FMT was seen. Finally, we observed changes in faecal bile acids (increased lithocholic, deoxycholic and (iso)lithocholic acid after METS-D FMT), inflammatory markers (decreased adipose tissue chemokine ligand 2 (CCL2) gene expression and plasma CCL2 after RYGB-D FMT) and changes in several intestinal microbiota taxa. Conclusion: Allogenic FMT using METS-D decreases insulin sensitivity in metabolic syndrome recipients when compared with using post-RYGB-D. Further research is needed to delineate the role of donor characteristics in FMT efficacy in human insulin-resistant subjects. Trial registration number: NTR4327.
  •  
6.
  • de Clercq, N. C., et al. (författare)
  • The effect of having Christmas dinner with in-laws on gut microbiota composition
  • 2019
  • Ingår i: Human Microbiome Journal. - : Elsevier BV. - 2452-2317. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The Christmas season can have a major impact on human health. Especially increased contact with in-laws during the holiday season is an important environmental factor known to affect both physical and mental health (Mirza et al., 2004). However, the mechanism through which in-laws influence host health is not yet understood. Emerging evidence has identified the intestinal microbiota as an important mediator for both physical and mental health. Here, we performed a prospective observational study to examine the impact of contact with in-laws on the gut microbiome during the Christmas season. We conducted 16S ribosomal DNA sequencing of fecal samples collected at two separate time points (December 23rd and December 27th 2016) from a group of 28 healthy volunteers celebrating Christmas. To discriminate between participants who visited their own family versus their in-laws, we built a multivariate statistical model that identified microbial biomarker species. We observed two distinct microbial-biomarker signatures discriminating the participants that visited their in-laws versus their own family over the Christmas season. We identified seven bacterial species whose relative-change profile differed significantly among these two groups. In participants visiting in-laws, there was a significant decrease in all Ruminococcus species, known to be associated with psychological stress and depression. A larger randomized controlled study is needed to reproduce these findings before we can recognize in-laws as a potential risk factor for the gut microbiota composition and subsequently host health. © 2019 Elsevier Ltd
  •  
7.
  • Deschasaux, M., et al. (författare)
  • Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography
  • 2018
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 24:10, s. 1526-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Trillions of microorganisms inhabit the human gut and are regarded as potential key factors for health(1,2). Characteristics such as diet, lifestyle, or genetics can shape the composition of the gut microbiota(2-6) and are usually shared by individuals from comparable ethnic origin. So far, most studies assessing how ethnicity relates to the intestinal microbiota compared small groups living at separate geographical locations(7-10). Using fecal 16S ribosomal RNA gene sequencing in 2,084 participants of the Healthy Life in an Urban Setting (HELIUS) study(11,12), we show that individuals living in the same city tend to share similar gut microbiota characteristics with others of their ethnic background. Ethnicity contributed to explain the interindividual dissimilarities in gut microbiota composition, with three main poles primarily characterized by operational taxonomic units (OTUs) classified as Prevotella (Moroccans, Turks, Ghanaians), Bacteroides (African Surinamese, South-Asian Surinamese), and Clostridiales (Dutch). The Dutch exhibited the greatest gut microbiota alpha-diversity and the South-Asian Surinamese the smallest, with corresponding enrichment or depletion in numerous OTUs. Ethnic differences in alpha-diversity and interindividual dissimilarities were independent of metabolic health and only partly explained by ethnic-related characteristics including sociodemographic, lifestyle, or diet factors. Hence, the ethnic origin of individuals may be an important factor to consider in microbiome research and its potential future applications in ethnic-diverse societies.
  •  
8.
  • Koopen, A., et al. (författare)
  • Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study
  • 2022
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 71:8, s. 1577-1587
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. Design In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. Results A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. Conclusions A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity.
  •  
9.
  • Koopen, A. M., et al. (författare)
  • Plasma Metabolites Related to Peripheral and Hepatic Insulin Sensitivity Are Not Directly Linked to Gut Microbiota Composition
  • 2020
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma metabolites affect a range of metabolic functions in humans, including insulin sensitivity (IS). A subset of these plasma metabolites is modified by the gut microbiota. To identify potential microbial-metabolite pathways involved in IS, we investigated the link between plasma metabolites, gut microbiota composition, and IS, using the gold-standard for peripheral and hepatic IS measurement in a group of participants with metabolic syndrome (MetSyn). In a cross-sectional study with 115 MetSyn participants, fasting plasma samples were collected for untargeted metabolomics analysis and fecal samples for 16S rRNA gene amplicon sequencing. A two-step hyperinsulinemic euglycemic clamp was performed to assess peripheral and hepatic IS. Collected data were integrated and potential interdependence between metabolites, gut microbiota, and IS was analyzed using machine learning prediction models. Plasma metabolites explained 13.2% and 16.7% of variance in peripheral and hepatic IS, respectively. Fecal microbiota composition explained 4.2% of variance in peripheral IS and was not related to hepatic IS. Although metabolites could partially explain the variances in IS, the top metabolites related to peripheral and hepatic IS did not significantly correlate with gut microbiota composition (both on taxonomical level and alpha-diversity). However, all plasma metabolites could explain 18.5% of the variance in microbial alpha-diversity (Shannon); the top 20 metabolites could even explain 44.5% of gut microbial alpha-diversity. In conclusion, plasma metabolites could partially explain the variance in peripheral and hepatic IS; however, these metabolites were not directly linked to the gut microbiota composition, underscoring the intricate relation between plasma metabolites, the gut microbiota, and IS in MetSyn
  •  
10.
  • Meijnikman, A. S., et al. (författare)
  • Distinct differences in gut microbial composition and functional potential from lean to morbidly obese subjects.
  • 2020
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 288:6, s. 699-710
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction The gut microbiome may contribute to the development of obesity. So far, the extent of microbiome variation in people with obesity has not been determined in large cohorts and for a wide range of body mass index (BMI). Here, we aimed to investigate whether the faecal microbial metagenome can explain the variance in several clinical phenotypes associated with morbid obesity. Methods Caucasian subjects were recruited at our hospital. Blood pressure and anthropometric measurements were taken. Dietary intake was determined using questionnaires. Shotgun metagenomic sequencing was performed on faecal samples from 177 subjects. Results Subjects without obesity (n = 82, BMI 24.7 +/- 2.9 kg m(-2)) and subjects with obesity (n = 95, BMI 38.6 +/- 5.1 kg m(-2)) could be clearly distinguished based on microbial composition and microbial metabolic pathways. A total number of 52 bacterial species differed significantly in people with and without obesity. Independent of dietary intake, we found that microbial pathways involved in biosynthesis of amino acids were enriched in subjects with obesity, whereas pathways involved in the degradation of amino acids were depleted. Machine learning models showed that more than half of the variance in body fat composition followed by BMI could be explained by the gut microbiome composition and microbial metabolic pathways, compared to 6% of variation explained in triglycerides and 9% in HDL. Conclusion Based on the faecal microbiota composition, we were able to separate subjects with and without obesity. In addition, we found strong associations between gut microbial amino acid metabolism and specific microbial species in relation to clinical features of obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy