SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Proia Lorenzo) "

Sökning: WFRF:(Proia Lorenzo)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnott, Shelley E., et al. (författare)
  • Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:1, s. 8-18
  • Tidskriftsartikel (refereegranskat)abstract
    • The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.
  •  
2.
  • Gómez-Gener, Lluís, et al. (författare)
  • Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought
  • 2015
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 125:3, s. 409-426
  • Tidskriftsartikel (refereegranskat)abstract
    • During summer drought, Mediterranean fluvial networks are transformed into highly heterogeneous landscapes characterized by different environments (i.e., running and impounded waters, isolated river pools and dry beds). This hydrological setting defines novel biogeochemically active areas that could potentially increase the rates of carbon emissions from the fluvial network to the atmosphere. Using chamber methods, we aimed to identify hot spots for carbon dioxide (CO2) and methane (CH4) emissions from two typical Mediterranean fluvial networks during summer drought. The CO2 efflux from dry beds (mean ± SE = 209 ± 10 mmol CO2 m−2 d−1) was comparable to that from running waters (120 ± 33 mmol m−2 d−1) and significantly higher than from impounded waters (36.6 ± 8.5 mmol m−2 d−1) and isolated pools (17.2 ± 0.9 mmol m−2 d−1). In contrast, the CH4 efflux did not significantly differ among environments, although the CH4 efflux was notable in some impounded waters (13.9 ± 10.1 mmol CH4 m−2 d−1) and almost negligible in the remaining environments (mean <0.3 mmol m−2 d−1). Diffusion was the only mechanism driving CO2 efflux in all environments and was most likely responsible for CH4 efflux in running waters, isolated pools and dry beds. In contrast, the CH4 efflux in impounded waters was primarily ebullition-based. Using a simple heuristic approach to simulate potential changes in carbon emissions from Mediterranean fluvial networks under future hydrological scenarios, we show that an extreme drying out (i.e., a four-fold increase of the surface area of dry beds) would double the CO2 efflux from the fluvial network. Correspondingly, an extreme transformation of running waters into impounded waters (i.e., a twofold increase of the surface area of impounded waters) would triple the CH4 efflux. Thus, carbon emissions from dry beds and impounded waters should be explicitly considered in carbon assessments of fluvial networks, particularly under predicted global change scenarios, which are expected to increase the spatial and temporal extent of these environments.
  •  
3.
  • Guasch, Helena, et al. (författare)
  • The Use of Biofilms to Assess the Effects of Chemicals on Freshwater Ecosystems : Biofilms in ecotoxicology
  • 2016
  • Ingår i: Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment .Edited by: Anna M. Romaní, Helena Guasch and M. Dolors Balaguer. - USA : Caister Academic Press. - 9781910190173 ; , s. 126-144
  • Bokkapitel (refereegranskat)abstract
    • Nowadays, biofilms are one of the principal targets of community ecotoxicology in aquatic ecosystems with a high potential for future use in ecotoxicology. A large set of methods derived from biofilm ecology has successfully been applied in ecotoxicology providing a diverse and comprehensive toolbox. Our ability to quantify the effects of pollution on different biofilm components, allows the direct effects of pollutants on the most sensitive community and their indirect effects on the rest of biofilm components to be evaluated. Biofilms are also a site for biotransfomation and/or transfer of chemicals to other aquatic organisms, supporting a more generalized use of biofilms in environmental chemistry. Investigations aiming to describe processes at biofilm scale, like nutrient dynamics and those including simple food chains, have recently been applied, providing the opportunity of upscaling the effects of pollutants on biofilms to food webs and ecosystems. Finally, biofilm ecotoxicology should now focus on providing the theoretical background for understanding the complex set of responses of natural communities to pollution. This knowledge should also be the basis for guiding the selection of the most appropriate tools and the development of new approaches for a better detection of the impact of pollution on aquatic life.
  •  
4.
  • Hebert, Marie-Pier, et al. (författare)
  • Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:1, s. 19-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.
  •  
5.
  • Hintz, William D., et al. (författare)
  • Current water quality guidelines across North America and Europe do not protect lakes from salinization
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization—indicated as elevated chloride (Cl−) concentration—will affect lake food webs and if two of the lowest Cl− thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl− thresholds established in Canada (120 mg Cl−/L) and the United States (230 mg Cl−/L) and throughout Europe where Cl− thresholds are generally higher. For instance, at 73% of our study sites, Cl− concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl− thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl− thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (5)
bokkapitel (1)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Laudon, Hjalmar (3)
Rusak, James A. (3)
Weyhenmeyer, Gesa A. (3)
Lundgren, Maria (3)
Zhang, Yan (1)
Korhonen, Laura (1)
visa fler...
Lindholm, Dan (1)
Vertessy, Beata G. (1)
Corcoll, Natàlia, 19 ... (1)
Wang, Mei (1)
Wang, Xin (1)
Liu, Yang (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Nàgy, Péter (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Swärd, Karl (1)
Nilsson, Per (1)
De Milito, Angelo (1)
Zhang, Jian (1)
Shukla, Deepak (1)
Kågedal, Katarina (1)
Chen, Guoqiang (1)
Liu, Wei (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Clarke, Robert (1)
Zhang, Fan (1)
Gonzalez-Alegre, Ped ... (1)
Jin, Lei (1)
Chen, Qi (1)
Taylor, Mark J. (1)
Romani, Luigina (1)
Wang, Ying (1)
Kumar, Ashok (1)
Simons, Matias (1)
Ishaq, Mohammad (1)
Yang, Qian (1)
Algül, Hana (1)
Brest, Patrick (1)
Simon, Hans-Uwe (1)
visa färre...
Lärosäte
Uppsala universitet (4)
Lunds universitet (4)
Sveriges Lantbruksuniversitet (4)
Linnéuniversitetet (3)
Karlstads universitet (3)
Göteborgs universitet (1)
visa fler...
Umeå universitet (1)
Stockholms universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy