SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pronicka Ewa) "

Sökning: WFRF:(Pronicka Ewa)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hellerud, Christina, 1955, et al. (författare)
  • Clinical heterogeneity and molecular findings in five Polish patients with glycerol kinase deficiency: investigation of two splice site mutations with computerized splice junction analysis and Xp21 gene-specific mRNA analysis.
  • 2003
  • Ingår i: Molecular genetics and metabolism. - 1096-7192. ; 79:3, s. 149-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Five cases of glycerol kinase deficiency are presented with clinical, biochemical, and genetic results. Two had the glycerol kinase deficiency as part of an Xp21 contiguous gene deletion syndrome-complex form-and three had an isolated form of the enzyme deficiency. In these we found two splice site mutations (IVS1+4A>G, IVS9-1G>T) and one insertion (1393_1394insG). In patients with the complex form, a deletion of the DAX1, GK genes and the distal part of the DMD gene was found. A computerized study was performed to predict the effects of the splice site mutations. It showed that the IVS9-1G>T mutation substantially altered and removed the wild-type site and enhanced a cryptic site seven nucleotides downstream, and that the IVS1+4A>G diminished the strength of the wild-type donor site from strong to leaky. To verify these predictions, we developed an RT-PCR system with gene-specific primers that exclusively amplifies the Xp21 glycerol kinase gene transcript. Identification of individuals at risk is motivated by a need to avoid delay in a correct diagnosis. For reliable identification of heterozygotes for isolated glycerol kinase deficiency, knowledge of the specific mutation in the proband is required. This is easily obtained with the RT-PCR analyses developed in this study.
  •  
2.
  • Wortmann, Saskia B, et al. (författare)
  • Eyes on MEGDEL: Distinctive Basal Ganglia Involvement in Dystonia Deafness Syndrome.
  • 2015
  • Ingår i: Neuropediatrics. - : Georg Thieme Verlag KG. - 1439-1899 .- 0174-304X. ; 46:2, s. 098-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Pediatric movement disorders are still a diagnostic challenge, as many patients remain without a (genetic) diagnosis. Magnetic resonance imaging (MRI) pattern recognition can lead to the diagnosis. MEGDEL syndrome (3-MethylGlutaconic aciduria, Deafness, Encephalopathy, Leigh-like syndrome MIM #614739) is a clinically and biochemically highly distinctive dystonia deafness syndrome accompanied by 3-methylglutaconic aciduria, severe developmental delay, and progressive spasticity. Mutations are found in SERAC1, encoding a phosphatidylglycerol remodeling enzyme essential for both mitochondrial function and intracellular cholesterol trafficking. Based on the homogenous phenotype, we hypothesized an accordingly characteristic MRI pattern. A total of 43 complete MRI studies of 30 patients were systematically reevaluated. All patients presented a distinctive brain MRI pattern with five characteristic disease stages affecting the basal ganglia, especially the putamen. In stage 1, T2 signal changes of the pallidum are present. In stage 2, swelling of the putamen and caudate nucleus is seen. The dorsal putamen contains an "eye" that shows no signal alteration and (thus) seems to be spared during this stage of the disease. It later increases, reflecting progressive putaminal involvement. This "eye" was found in all patients with MEGDEL syndrome during a specific age range, and has not been reported in other disorders, making it pathognomonic for MEDGEL and allowing diagnosis based on MRI findings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy