SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prytherch J.) "

Sökning: WFRF:(Prytherch J.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blomquist, B. W., et al. (författare)
  • Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer : Results From the High Wind Speed Gas Exchange Study (HiWinGS)
  • 2017
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 122:10, s. 8034-8062
  • Tidskriftsartikel (refereegranskat)abstract
    • A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k(660)) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s(-1) and significant wave heights to 8 m. Measurements of k(660) for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U-10N), following a power law relationship of the form: k660CO2 approximate to U10N1.68 and k660dms approximate to U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k(660) with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.
  •  
2.
  • Dall'Ora, C, et al. (författare)
  • Nurses' 12-hour shifts and missed or delayed vital signs observations on hospital wards: retrospective observational study
  • 2019
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 9:1, s. e024778-
  • Tidskriftsartikel (refereegranskat)abstract
    • 12-hour shifts worked by nurses on acute hospital wards have been associated with increased rates of missed care reported by nurses. This study aimed to measure the association between nurses working shifts of at least 12 hours and an objective measure of missed care: vital signs observations taken on time according to an acuity-based surveillance protocol.DesignA retrospective observational study using routinely collected data from March 2012 to March 2015.Setting32 general inpatient wards at a large acute hospital in England.Participants658 628 nursing shifts nested in 24 069 ward days.Outcome measuresThe rate of daily delayed and missed vital signs observations. We focused on situations where vital signs observations were required at least every 4 hours and measured the number of instances where observations were delayed or missed, per 24-hour period. For each ward and each day, shift patterns were characterised in terms of proportion of care hours per patient day deriving from ‘long’ shifts (≥12 hours) for both registered nurses and healthcare assistants.ResultsOn 99 043 occasions (53%), observations were significantly delayed, and on 81 568 occasions (44%), observations were missed. Observations were more likely to be delayed when a higher proportion of the hours worked by healthcare assistants were part of long shifts (IRR=1.05; 95% CI 1.00 to 1.10). No significant association was found in relation to the proportion of hours registered nurses worked as long shifts.ConclusionOn days when a higher proportion of hours worked by healthcare assistants are from long shifts, the risk of delaying vital signs observations is higher, suggesting lower job performance. While longer shifts are thought to require fewer staff resources to maintain nurse-to-patient ratios, any benefits may be lost if staff become less productive.
  •  
3.
  • Achtert, P., et al. (författare)
  • Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:11, s. 4993-5007
  • Tidskriftsartikel (refereegranskat)abstract
    • Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreakerOden during the summer of 2014. Such ship-borne Doppler measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic atmospheric boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This held true particularly within the atmospheric boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of vertical winds with a random error below 0.2 m s−1. The comparison of lidar-measured wind and radio soundings gives a mean bias of 0.3 m s−1 (2°) and a mean standard deviation of 1.1 m s−1 (12°) for wind speed (wind direction). The agreement for wind direction degrades with height. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.
  •  
4.
  •  
5.
  • Sotiropoulou, Georgia, et al. (författare)
  • Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE) : Contrasting open-water and sea-ice surfaces during melt and freeze-up seasons
  • 2016
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 29:24, s. 8721-8744
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces, near the ice edge, offering insight to the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that our knowledge derived from measurements taken within the pan-Arctic area and on the central ice-pack does not necessarily apply closer to the ice-edge. This study offers an insight to the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.
  •  
6.
  • Srivastava, Piyush, et al. (författare)
  • Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:7, s. 4763-4778
  • Tidskriftsartikel (refereegranskat)abstract
    • A major source of uncertainty in both climate projections and seasonal forecasting of sea ice is inadequate representation of surface–atmosphere exchange processes. The observations needed to improve understanding and reduce uncertainty in surface exchange parameterizations are challenging to make and rare. Here we present a large dataset of ship-based measurements of surface momentum exchange (surface drag) in the vicinity of sea ice from the Arctic Clouds in Summer Experiment (ACSE) in July–October 2014, and the Arctic Ocean 2016 experiment (AO2016) in August–September 2016. The combined dataset provides an extensive record of momentum flux over a wide range of surface conditions spanning the late summer melt and early autumn freeze-up periods, and a wide range of atmospheric stabilities. Surface exchange coefficients are estimated from in situ eddy covariance measurements. The local sea-ice fraction is determined via automated processing of imagery from ship-mounted cameras. The surface drag coefficient, CD10n, peaks at local ice fractions of 0.6–0.8, consistent with both recent aircraft-based observations and theory. Two state-of-the-art parameterizations have been tuned to our observations, with both providing excellent fits to the measurements.
  •  
7.
  • Tjernström, Michael, et al. (författare)
  • Warm-air advection, air mass transformation and fog causes rapid ice melt
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:13, s. 5594-5602
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of similar to 15Wm(-2) for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to similar to 50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.
  •  
8.
  •  
9.
  • Elvidge, A. D., et al. (författare)
  • Surface Heat and Moisture Exchange in the Marginal Ice Zone : Observations and a New Parameterization Scheme for Weather and Climate Models
  • 2021
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 126:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Aircraft observations from two Arctic field campaigns are used to characterize and model surface heat and moisture exchange over the marginal ice zone (MIZ). We show that the surface roughness lengths for heat and moisture over uninterrupted sea ice vary with roughness Reynolds number (R*; itself a function of the roughness length for momentum, z0, and surface wind stress), with a peak at the transition between aerodynamically smooth (R*<0.135) and aerodynamically rough (R*>2.5) regimes. A pre-existing theoretical model based on surface-renewal theory accurately reproduces this peak, in contrast to the simple parameterizations currently employed in two state-of-the-art numerical weather prediction models, which are insensitive to R*. We propose a new, simple parameterization for surface exchange over the MIZ that blends this theoretical model for sea ice with surface exchange over water as a function of sea ice concentration. In offline tests, this new scheme performs much better than the existing schemes for the rough conditions observed during the 'Iceland Greenland Seas Project' field campaign. The bias in total turbulent heat flux across the MIZ is reduced to only 13 W m(-2) for the new scheme, from 48 and 80 W m(-2) for the Met Office Unified Model and ECMWF Integrated Forecast System schemes, respectively. It also performs marginally better for the comparatively smooth conditions observed during the 'Aerosol-Cloud Coupling and Climate Interactions in the Arctic' field campaign. The new surface exchange scheme has the benefit of being physically-motivated, comparatively accurate and straightforward to implement, although to reap the full benefits an improvement to the representation of sea ice topography via z0 is required.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy