SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Przelomska N. A. S.) "

Search: WFRF:(Przelomska N. A. S.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ralimanana, H., et al. (author)
  • Madagascar’s extraordinary biodiversity: Threats and opportunities
  • 2022
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 378:6623
  • Research review (peer-reviewed)abstract
    • Madagascar’s unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar’s terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar.
  •  
2.
  • Antonelli, Alexandre, 1978, et al. (author)
  • Madagascar's extraordinary biodiversity : Evolution, distribution, and use
  • 2022
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 378:6623, s. 962-
  • Journal article (peer-reviewed)abstract
    • Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique " living laboratory" for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity.
  •  
3.
  • Perez-Escobar, O. A., et al. (author)
  • Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication
  • 2021
  • In: Molecular Biology and Evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 38:10, s. 4475-4492
  • Journal article (peer-reviewed)abstract
    • The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by similar to 2,200years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a similar to 2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.
  •  
4.
  • Smith, L. T., et al. (author)
  • Revised Species Delimitation in the Giant Water Lily Genus Victoria (Nymphaeaceae) Confirms a New Species and Has Implications for Its Conservation
  • 2022
  • In: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 13
  • Journal article (peer-reviewed)abstract
    • Reliably documenting plant diversity is necessary to protect and sustainably benefit from it. At the heart of this documentation lie species concepts and the practical methods used to delimit taxa. Here, we apply a total-evidence, iterative methodology to delimit and document species in the South American genus Victoria (Nymphaeaceae). The systematics of Victoria has thus far been poorly characterized due to difficulty in attributing species identities to biological collections. This research gap stems from an absence of type material and biological collections, also the confused diagnosis of V. cruziana. With the goal of improving systematic knowledge of the genus, we compiled information from historical records, horticulture and geography and assembled a morphological dataset using citizen science and specimens from herbaria and living collections. Finally, we generated genomic data from a subset of these specimens. Morphological and geographical observations suggest four putative species, three of which are supported by nuclear population genomic and plastid phylogenomic inferences. We propose these three confirmed entities as robust species, where two correspond to the currently recognized V. amazonica and V. cruziana, the third being new to science, which we describe, diagnose and name here as V. boliviana Magdalena and L. T. Sm. Importantly, we identify new morphological and molecular characters which serve to distinguish the species and underpin their delimitations. Our study demonstrates how combining different types of character data into a heuristic, total-evidence approach can enhance the reliability with which biological diversity of morphologically challenging groups can be identified, documented and further studied.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view