SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pu Rui) "

Sökning: WFRF:(Pu Rui)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Guo, Xin, et al. (författare)
  • Achieving low-power single-wavelength-pair nanoscopy with NIR-II continuous-wave laser for multi-chromatic probes
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors introduce stimulated-emission induced excitation depletion (STExD) nanoscopy using a single pair of low-power, near-infrared, continue-wave lasers. Emission of multichromatic probes is inhibited by cascade amplified depletion in lanthanide upconversion systems induced by manipulating their common sensitizer. Stimulated emission depletion (STED) microscopy is a powerful diffraction-unlimited technique for fluorescence imaging. Despite its rapid evolution, STED fundamentally suffers from high-intensity light illumination, sophisticated probe-defined laser schemes, and limited photon budget of the probes. Here, we demonstrate a versatile strategy, stimulated-emission induced excitation depletion (STExD), to deplete the emission of multi-chromatic probes using a single pair of low-power, near-infrared (NIR), continuous-wave (CW) lasers with fixed wavelengths. With the effect of cascade amplified depletion in lanthanide upconversion systems, we achieve emission inhibition for a wide range of emitters (e.g., Nd3+, Yb3+, Er3+, Ho3+, Pr3+, Eu3+, Tm3+, Gd3+, and Tb3+) by manipulating their common sensitizer, i.e., Nd3+ ions, using a 1064-nm laser. With NaYF4:Nd nanoparticles, we demonstrate an ultrahigh depletion efficiency of 99.3 +/- 0.3% for the 450 nm emission with a low saturation intensity of 23.8 +/- 0.4 kW cm(-2). We further demonstrate nanoscopic imaging with a series of multi-chromatic nanoprobes with a lateral resolution down to 34 nm, two-color STExD imaging, and subcellular imaging of the immunolabelled actin filaments. The strategy expounded here promotes single wavelength-pair nanoscopy for multi-chromatic probes and for multi-color imaging under low-intensity-level NIR-II CW laser depletion.
  •  
3.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
4.
  • Huang, Fuhua, et al. (författare)
  • Suppression of Cation Intermixing Highly Boosts the Performance of Core-Shell Lanthanide Upconversion Nanoparticles
  • 2023
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 145:32, s. 17621-17631
  • Tidskriftsartikel (refereegranskat)abstract
    • Lanthanide upconversion nanoparticles (UCNPs) have beenextensivelyexplored as biomarkers, energy transducers, and information carriersin wide-ranging applications in areas from healthcare and energy toinformation technology. In promoting the brightness and enrichingthe functionalities of UCNPs, core-shell structural engineeringhas been well-established as an important approach. Despite its importance,a strong limiting issue has been identified, namely, cation intermixingin the interfacial region of the synthesized core-shell nanoparticles.Currently, there still exists confusion regarding this destructivephenomenon and there is a lack of facile means to reach a delicatecontrol of it. By means of a new set of experiments, we identify andprovide in this work a comprehensive picture for the major physicalmechanism of cation intermixing occurring in synthesis of core-shellUCNPs, i.e., partial or substantial core nanoparticle dissolutionfollowed by epitaxial growth of the outer layer and ripening of theentire particle. Based on this picture, we provide an easy but effectiveapproach to tackle this issue that enables us to produce UCNPs withhighly boosted optical properties.
  •  
5.
  • Huang, Fuhua, et al. (författare)
  • Transient energy trapping as a size-conserving surface passivation strategy for producing bright ultrasmall upconversion nanoprobes
  • 2023
  • Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855 .- 2211-3282. ; 105
  • Tidskriftsartikel (refereegranskat)abstract
    • Lanthanide-doped upconversion nanoparticles (UCNPs) have been widely exploited as nanoprobes or energy transducers in traditional as well as emerging biological applications, such as bioimaging, photodynamic ther-apy, optogenetics, gene editing. However, the breadth and depth of their utility in the biomedical areas are still not comparable to conventional luminescent probes, such as fluorescent dyes and semiconductor quantum dots. Their application is largely limited by their large size, typically > 20 nm, to ensure a sufficient luminescence brightness. In order to enhance the brightness of UCNPs without exceeding the critical size limitations for biomedical applications, we employ here a transient energy trapping effect as a nanoprobe surface passivation strategy to prevent deleterious distant energy migration in the host lattice, which is particularly prevalent in ultrasmall UCNPs and leads to luminescence quenching. We demonstrate this strategy by incorporating Tm3+ ions as energy trapping centers near the surface of sub-10 nm NaYF4: Yb, Er UCNPs and obtain an emission enhancement by almost one order of magnitude without any increment on the nanoparticle size. Our work presents a promising strategy for the preparation of ultrasmall and bright upconversion nanoprobes that are less vulnerable to surface quenching and that potentially minimize the interference with the object. This facilitates their biomedical applications as here demonstrated by unprecedented high-quality cell labeling and imaging, featured with very uniform nanoparticle distribution in the outer nuclear region.
  •  
6.
  • Liang, Yusen, et al. (författare)
  • Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity
  • 2022
  • Ingår i: Nature Nanotechnology. - : Springer Nature. - 1748-3387 .- 1748-3395. ; 17:5, s. 524-530
  • Tidskriftsartikel (refereegranskat)abstract
    • A photon avalanche (PA) effect that occurs in lanthanide-doped solids gives rise to a giant nonlinear response in the luminescence intensity to the excitation light intensity. As a result, much weaker lasers are needed to evoke such PAs than for other nonlinear optical processes. Photon avalanches are mostly restricted to bulk materials and conventionally rely on sophisticated excitation schemes, specific for each individual system. Here we show a universal strategy, based on a migrating photon avalanche (MPA) mechanism, to generate huge optical nonlinearities from various lanthanide emitters located in multilayer core/shell nanostructrues. The core of the MPA nanoparticle, composed of Yb3+ and Pr3+ ions, activates avalanche looping cycles, where PAs are synchronously achieved for both Yb3+ and Pr3+ ions under 852 nm laser excitation. These nanocrystals exhibit a 26th-order nonlinearity and a clear pumping threshold of 60 kW cm−2. In addition, we demonstrate that the avalanching Yb3+ ions can migrate their optical nonlinear response to other emitters (for example, Ho3+ and Tm3+) located in the outer shell layer, resulting in an even higher-order nonlinearity (up to the 46th for Tm3+) due to further cascading multiplicative effects. Our strategy therefore provides a facile route to achieve giant optical nonlinearity in different emitters. Finally, we also demonstrate applicability of MPA emitters to bioimaging, achieving a lateral resolution of ~62 nm using one low-power 852 nm continuous-wave laser beam.
  •  
7.
  •  
8.
  • Peng, Tingting, et al. (författare)
  • The Spectroscopic Properties and Microscopic Imaging of Thulium-Doped Upconversion Nanoparticles Excited at Different NIR-II Light
  • 2021
  • Ingår i: Biosensors. - : MDPI AG. - 2079-6374. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Lanthanide-doped upconversion nanoparticles (UCNPs) are promising bioimaging nanoprobes due to their excellent photostability. As one of the most commonly used lanthanide activators, Tm3+ ions have perfect ladder-type electron configuration and can be directly excited by bio-friendly near-infrared-II (NIR-II) wavelengths. Here, the emission characteristics of Tm3+-doped nanoparticles under laser excitations of different near-infrared-II wavelengths were systematically investigated. The 1064 nm, 1150 nm, and 1208 nm lasers are proposed to be three excitation strategies with different response spectra of Tm3+ ions. In particular, we found that 1150 nm laser excitation enables intense three-photon 475 nm emission, which is nearly 100 times stronger than that excited by 1064 nm excitation. We further optimized the luminescence brightness after investigating the luminescence quenching mechanism of bare NaYF4: Tm (1.75%) core. After growing an inert shell, a ten-fold increase of emission intensity was achieved. Combining the advantages of NIR-II wavelength and the higher-order nonlinear excitation, a promising facile excitation strategy was developed for the application of thulium-doped upconversion nanoparticles in nanoparticles imaging and cancer cell microscopic imaging.
  •  
9.
  • Peng, Xingyun, et al. (författare)
  • Fast upconversion super-resolution microscopy with 10 μs per pixel dwell times
  • 2019
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 11:4, s. 1563-1569
  • Tidskriftsartikel (refereegranskat)abstract
    • A facile strategy is proposed to simultaneously enhance the intensity (10 times) and accelerate the transients (one fifth) of the 455 nm emission of Yb3+/Tm3+ co-doped NaYF4 nanocrystals via highly-doped sensitizers and a sandwich structure.
  •  
10.
  • Wang, Jiechen, et al. (författare)
  • A parallel algorithm for constructing Voronoi diagrams based on point-set adaptive grouping
  • 2014
  • Ingår i: Concurrency and Computation. - : Wiley. - 1532-0626 .- 1532-0634. ; 26:2, s. 434-446
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a parallel algorithm for constructing Voronoi diagrams based on point-set adaptive grouping. The binary tree splitting method is used to adaptively group the point set in the plane and construct sub-Voronoi diagrams for each group. Given that the construction of Voronoi diagrams in each group consumes the majority of time and that construction within one group does not affect that in other groups, the use of a parallel algorithm is suitable.After constructing the sub-Voronoi diagrams, we extracted the boundary points of the four sides of each sub-group and used to construct boundary site Voronoi diagrams. Finally, the sub-Voronoi diagrams containing each boundary point are merged with the corresponding boundary site Voronoi diagrams. This produces the desired Voronoi diagram. Experiments demonstrate the efficiency of this parallel algorithm, and its time complexity is calculated as a function of the size of the point set, the number of processors, the average number of points in each block, and the number of boundary points.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Liu, Haichun (7)
Widengren, Jerker (5)
Huang, Bingru (3)
Wang, Mei (2)
Kominami, Eiki (2)
Bonaldo, Paolo (2)
visa fler...
Minucci, Saverio (2)
Ågren, Hans (2)
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Wang, Li (2)
Zhang, Hong (2)
Zorzano, Antonio (2)
Bozhkov, Peter (2)
Petersen, Morten (2)
Agren, Hans (2)
Przyklenk, Karin (2)
Noda, Takeshi (2)
Zhao, Ying (2)
Kampinga, Harm H. (2)
Li, Jun (2)
Zhang, Lin (2)
Harris, Adrian L. (2)
Hill, Joseph A. (2)
Tannous, Bakhos A (2)
Segura-Aguilar, Juan (2)
Dikic, Ivan (2)
Kaminskyy, Vitaliy O ... (2)
Nishino, Ichizo (2)
Zhang, Jinglai (2)
Okamoto, Koji (2)
Olsson, Stefan (2)
Layfield, Robert (2)
Schorderet, Daniel F ... (2)
Hofman, Paul (2)
Lingor, Paul (2)
Xu, Liang (2)
Sood, Anil K (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (9)
Lunds universitet (3)
Linköpings universitet (2)
Karolinska Institutet (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
visa fler...
Umeå universitet (1)
Stockholms universitet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Teknik (3)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy