SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Puccio Walter) "

Sökning: WFRF:(Puccio Walter)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
2.
  • Karlsson, Tomas, 1964-, et al. (författare)
  • The MEFISTO and WPT Electric Field Sensors of the Plasma Wave Investigation on the BepiColombo Mio Spacecraft Measurements of Low and High Frequency Electric Fields at Mercury
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 216:8
  • Forskningsöversikt (refereegranskat)abstract
    • This paper describes the design of MEFISTO (Mercury Electric Field In-Situ Tool) and WPT (Wire Probe Antenna) electric field sensors for Plasma Wave Investigation (PWI) on the BepiColombo Mio spacecraft (Mercury Magnetospheric Orbiter, MMO). The two sensors will enable the first observations of electric fields, plasma waves and radio waves in and around the Hermean magnetosphere and exosphere. MEFISTO and WPT are dipole antennas with 31.6 m tip-to-tip length. Each antenna element has a spherical probe at each end of the wire (15 m length). They are extended orthogonally in the spin plane of the spacecraft and enable measurements of the electric field in the frequency range of DC to 10 MHz by the connection to two sets of receivers, EWO for a lower frequency range and SORBET for higher frequencies. In the initial operations after the launch (20 Oct. 2018), we succeeded to confirm the health of both antennas and to release the launch lock of the WPT. After Mercury orbit insertion planned at the end of 2025, both sensors will be fully deployed and activate full operations of the PWI electric field measurements.
  •  
3.
  • Maksimovic, M., et al. (författare)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
4.
  • Maksimovic, M., et al. (författare)
  • The Solar Orbiter Radio and Plasma Waves (RPW) instrument
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.
  •  
5.
  • Ronchi, Emanuele, et al. (författare)
  • A bipolar LED drive technique for high performance, stability and power in the nanosecond time scale
  • 2009
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 599:2-3, s. 243-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsed light sources are often used to monitor the stability of light detectors such as photomultiplier tubes. Light emitting diodes (LEDs) are suitable for this due to their high specific light yield. While pulsed operation in the region of [mu]s is generally accessible with most LEDs and drivers, the ns time scale often represents a technical challenge. This paper describes a technique of bipolar LED drive that can produce light pulses of a few ns at high stability, reliability and power. The driver also offers control over the properties of the light pulse produced such as shape, intensity and repetition rate. This approach has been studied in 2003 and implemented in 2004 for two fusion neutron spectrometers at the Joint European Torus (JET) namely the Magnetic Proton Recoil upgrade (MPRu) and the Time Of Flight Optimized for Rate (TOFOR). A driver has been manufactured and connected to the scintillation detectors of each spectrometer through an optical fiber distribution network. Both MPRu and TOFOR have been successfully relying on this system for calibration and performance monitoring for several years, confirming the long-term stability and reliability of this technique.
  •  
6.
  •  
7.
  • Rothkaehl, H., et al. (författare)
  • Diagnostics of Space Plasma on Board International Space Station - ISS
  • 2011
  • Ingår i: Contributions to Plasma Physics. - : Wiley. - 0863-1042 .- 1521-3986. ; 51:2-3, s. 158-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Electromagnetic emissions observed in the nearest Earth environment are a superposition of natural emissions and various types of man-made noises. Also, as a consequence of catastrophic events on the Earth surface such as: thunderstorm activity, earthquakes, volcanic eruptions, electromagnetic signals are registered on board low orbiting satellites. Therefore, a more accurate physical description of such a complex and dynamic system calls for a long term multi-point and multi-scales coordinated monitoring of space environment. The aim of OBSTANOVKA experiment on board ISS station is to monitor and diagnose the electromagnetic radiation and property of plasma around station, to enable the development theory of near Earth plasma interaction and for application purposes in space technology. To achieve these goals the Plasma-Wave Complex (PWC) was designed and constructed. Radio Frequency Analyser (RFA) has been developed jointly by SRC PAS in Warsaw and by IRF in Uppsala. New design radio receiver for frequency band 0.1-15 MHz, with three electric and magnetic field component of antenna system on board ISS was designed to monitoring and investigate the ionospheric plasma property and artificial noises generated around ISS. The instrument can be also used for monitoring the electromagnetic ecosystem for space weather purpose. New digital technology of this instrument creates a excellent possibility for monitoring the electromagnetic emissions in space and time domain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy