SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Puigmarti Luis Josep) "

Sökning: WFRF:(Puigmarti Luis Josep)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Danila, Ion, et al. (författare)
  • Hierarchical Chiral Expression from the Nano- to Mesoscale in Synthetic Supramolecular Helical Fibers of a Nonamphiphilic C(3)-Symmetrical pi-Functional Molecule
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:21, s. 8344-8353
  • Tidskriftsartikel (refereegranskat)abstract
    • The controlled preparation of chiral structures is a contemporary challenge for supramolecular science because of the interesting properties that can arise from the resulting materials, and here we show that a synthetic nonamphiphilic C(3) compound containing pi-functional tetrathiafulvalene units can form this kind of object. We describe the synthesis, characterization, and self-assembly properties in solution and in the solid state of the enantiopure materials. Circular dichroism (CD) measurements show optical activity resulting from the presence of twisted stacks of preferential helicity and also reveal the critical importance of fiber nucleation in their formation. Molecular mechanics (MM) and molecular dynamics (MD) simulations combined with CD theoretical calculations demonstrate that the (5) enantiomer provides the (M) helix, which is more stable than the (P) helix for this enantiomer. This relationship is for the first time established in this family of C(3) symmetric compounds. In addition, we show that introduction of the "wrong" enantiomer in a stack decreases the helical reversal barrier in a nonlinear manner, which very probably accounts for the absence of a "majority rules" effect. Mesoscopic chiral fibers, which show inverted helicity, i.e. (P) for the (S) enantiomer and (M) for the (R) one, have been obtained upon reprecipitation from dioxane and analyzed by optical and electronic microscopy. The fibers obtained with the racemic mixture present, as a remarkable feature, opposite homochiral domains within the same fiber, separated by points of helical reversal. Their formation can be explained through an "oscillating" crystallization mechanism. Although C(3) symmetric disk-shaped molecules containing a central benzene core substituted in the 1,3,5 positions with 3,3'-diamido-2,2'-bipyridine based wedges have shown peculiar self-assembly properties for amphiphilic derivatives, the present result shows the benefits of reducing the nonfunctional part of the molecule, in our case with short chiral isopentyl chains. The research reported herein represents an important step toward the preparation of functional mesostructures with controlled helical architectures.
  •  
2.
  • Rodriguez-Martinez, Xabier, et al. (författare)
  • Microfluidic-Assisted Blade Coating of Compositional Libraries for Combinatorial Applications: The Case of Organic Photovoltaics
  • 2020
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 10:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Microfluidic technologies are highly adept at generating controllable compositional gradients in fluids, a feature that has accelerated the understanding of the importance of chemical gradients in biological processes. That said, the development of versatile methods to generate controllable compositional gradients in the solid-state has been far more elusive. The ability to produce such gradients would provide access to extensive compositional libraries, thus enabling the high-throughput exploration of the parametric landscape of functional solids and devices in a resource-, time-, and cost-efficient manner. Herein, the synergic integration of microfluidic technologies is reported with blade coating to enable the controlled formation of compositional lateral gradients in solution. Subsequently, the transformation of liquid-based compositional gradients into solid-state thin films using this method is demonstrated. To demonstrate efficacy of the approach, microfluidic-assisted blade coating is used to optimize blending ratios in organic solar cells. Importantly, this novel technology can be easily extended to other solution processable systems that require the formation of solid-state compositional lateral gradients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy