SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pursiainen M.) "

Sökning: WFRF:(Pursiainen M.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gutierrez, C. P., et al. (författare)
  • DES16C3cje : A low-luminosity, long-lived supernova
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:1, s. 95-110
  • Tidskriftsartikel (refereegranskat)abstract
    • We present DES16C3cje, a low-luminosity, long-lived type II supernova (SN II) at redshift 0.0618, detected by the Dark Energy Survey (DES). DES16C3cje is a unique SN. The spectra are characterized by extremely narrow photospheric lines corresponding to very low expansion velocities of less than or similar to 1500 km s(-1), and the light curve shows an initial peak that fades after 50 d before slowly rebrightening over a further 100 d to reach an absolute brightness of M-r similar to 15.5 mag. The decline rate of the late-time light curve is then slower than that expected from the powering by radioactive decay of Co-56, but is comparable to that expected from accretion power. Comparing the bolometric light curve with hydrodynamical models, we find that DES16C3cje can be explained by either (i) a low explosion energy (0.11 foe) and relatively large Ni-56 production of 0.075 M-circle dot from an similar to 15 M-circle dot red supergiant progenitor typical of other SNe II, or (ii) a relatively compact similar to 40 M-circle dot star, explosion energy of 1 foe, and 0.08 M-circle dot of Ni-56. Both scenarios require additional energy input to explain the late-time light curve, which is consistent with fallback accretion at a rate of similar to 0.5 x 10(-)(8) M-circle dot s(-1).
  •  
2.
  • Onori, F., et al. (författare)
  • The nuclear transient AT 2017gge : a tidal disruption event in a dusty and gas-rich environment and the awakening of a dormant SMBH
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 517:1, s. 76-98
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from a dense multwavelength [optical/UV, near-infrared (IR), and X-ray] follow-up campaign of the nuclear transient AT 2017gge, covering a total of 1698 d from the transient's discovery. The bolometric light curve, the blackbody temperature and radius, the broad H and He i lambda 5876 emission lines and their evolution with time, are all consistent with a tidal disruption event (TDE) nature. A soft X-ray flare is detected with a delay of similar to 200 d with respect to the optical/UV peak and it is rapidly followed by the emergence of a broad He ii lambda 4686 and by a number of long-lasting high ionization coronal emission lines. This indicate a clear connection between a TDE flare and the appearance of extreme coronal line emission (ECLEs). An IR echo, resulting from dust re-radiation of the optical/UV TDE light is observed after the X-ray flare and the associated near-IR spectra show a transient broad feature in correspondence of the He i lambda 10830 and, for the first time in a TDE, a transient high-ionization coronal NIR line (the [Fe xiii] lambda 10798) is also detected. The data are well explained by a scenario in which a TDE occurs in a gas-and-dust rich environment and its optical/UV, soft X-ray, and IR emission have different origins and locations. The optical emission may be produced by stellar debris stream collisions prior to the accretion disc formation, which is instead responsible for the soft X-ray flare, emitted after the end of the circularization process.
  •  
3.
  • Petrushevska, T., et al. (författare)
  • The rise and fall of the iron-strong nuclear transient PS16dtm
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Thanks to the advent of large-scale optical surveys, a diverse set of flares from the nuclear regions of galaxies has recently been discovered. These include the disruption of stars by supermassive black holes at the centers of galaxies – nuclear transients known as tidal disruption events (TDEs). Active galactic nuclei (AGN) can show extreme changes in the brightness and emission line intensities, often referred to as changing-look AGN (CLAGN). Given the physical and observational similarities, the interpretation and distinction of nuclear transients as CLAGN or TDEs remains difficult. One of the obstacles of making progress in the field is the lack of well-sampled data of long-lived nuclear outbursts in AGN.Aims. Here, we study PS16dtm, a nuclear transient in a Narrow Line Seyfert 1 (NLSy1) galaxy, which has been proposed to be a TDE candidate. Our aim is to study the spectroscopic and photometric properties of PS16dtm, in order to better understand the outbursts originating in NLSy1 galaxies.Methods. Our extensive multiwavelength follow-up that spans around 2000 days includes photometry and spectroscopy in the UV/optical, as well as mid-infrared (MIR) and X-ray observations. Furthermore, we improved an existing semiempirical model in order to reproduce the spectra and study the evolution of the spectral lines.Results. The UV/optical light curve shows a double peak at ∼50 and ∼100 days after the first detection, and it declines and flattens afterward, reaching preoutburst levels after 2000 days of monitoring. The MIR light curve rises almost simultaneously with the optical, but unlike the UV/optical which is approaching the preoutburst levels in the last epochs of our observations, the MIR emission is still rising at the time of writing. The optical spectra show broad Balmer features and the strongest broad Fe II emission ever detected in a nuclear transient. This broad Fe II emission was not present in the archival preoutburst spectrum and almost completely disappeared +1868 days after the outburst. We found that the majority of the flux of the broad Balmer and Fe II lines is produced by photoionization. We detect only weak X-ray emission in the 0.5−8 keV band at the location of PS16dtm, at +848, +1130, and +1429 days past the outburst. This means that the X-ray emission continues to be lower by at least an order of magnitude, compared to archival, preoutburst measurements.Conclusions. We confirm that the observed properties of PS16dtm are difficult to reconcile with normal AGN variability. The TDE scenario continues to be a plausible explanation for the observed properties, even though PS16dtm shows differences compared to TDE in quiescent galaxies. We suggest that this event is part of a growing sample of TDEs that show broad Balmer line profiles and Fe II complexes. We argue that the extreme variability seen in the AGN host due to PS16dtm may have easily been misclassified as a CLAGN, especially if the rising part of the light curve had been missed. This implies that some changing look episodes in AGN may be triggered by TDEs. Imaging and spectroscopic data of AGN with good sampling are needed to enable testing of possible physical mechanisms behind the extreme variability in AGN.
  •  
4.
  • Pursiainen, M., et al. (författare)
  • SN 2018bsz : A Type I superluminous supernova with aspherical circumstellar material
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a spectroscopic analysis of the most nearby Type I superluminous supernova (SLSN-I), SN 2018bsz. The photometric evolution of SN 2018bsz has several surprising features, including an unusual pre-peak plateau and evidence for rapid formation of dust ≳200 d post-peak. We show here that the spectroscopic and polarimetric properties of SN 2018bsz are also unique. While its spectroscopic evolution closely resembles SLSNe-I, with early O II absorption and C II P Cygni profiles followed by Ca, Mg, Fe, and other O features, a multi-component Hα profile appearing at ∼30 d post-maximum is the most atypical. The Hα is at first characterised by two emission components, one at ∼+3000 km s−1 and a second at ∼ − 7500 km s−1, with a third, near-zero-velocity component appearing after a delay. The blue and central components can be described by Gaussian profiles of intermediate width (FWHM ∼ 2000–6000 km s−1), but the red component is significantly broader (FWHM ≳ 10 000 km s−1) and Lorentzian. The blue Hα component evolves towards a lower-velocity offset before abruptly fading at ∼ + 100 d post-maximum brightness, concurrently with a light curve break. Multi-component profiles are observed in other hydrogen lines, including Paβ, and in lines of Ca II and He I. Spectropolarimetry obtained before (10.2 d) and after (38.4 d) the appearance of the H lines shows a large shift on the Stokes Q – U plane consistent with SN 2018bsz undergoing radical changes in its projected geometry. Assuming the supernova is almost unpolarised at 10.2 d, the continuum polarisation at 38.4 d reaches P ∼ 1.8%, implying an aspherical configuration. We propose that the observed evolution of SN 2018bsz can be explained by highly aspherical, possibly disk-like, circumstellar material (CSM) with several emitting regions. After the supernova explosion, the CSM is quickly overtaken by the ejecta, but as the photosphere starts to recede, the different CSM regions re-emerge, producing the peculiar line profiles. Based on the first appearance of Hα, we can constrain the distance of the CSM to be less than ∼6.5 × 1015 cm (430 AU), or even lower (≲87 AU) if the pre-peak plateau is related to an eruption that created the CSM. The presence of CSM has been inferred previously for other SLSNe-I, both directly and indirectly. However, it is not clear whether the rare properties of SN 2018bsz can be generalised for SLSNe-I, for example in the context of pulsational pair instability, or whether they are the result of an uncommon evolutionary path, possibly involving a binary companion.
  •  
5.
  • Short, P., et al. (författare)
  • Delayed appearance and evolution of coronal lines in the TDE AT2019qiz
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 525:1, s. 1568-1587
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidal disruption events (TDEs) occur when a star gets torn apart by a supermassive black hole as it crosses its tidal radius. We present late-time optical and X-ray observations of the nuclear transient AT2019qiz, which showed the typical signs of an optical-UV transient class commonly believed to be TDEs. Optical spectra were obtained 428, 481, and 828 rest-frame days after optical light-curve peak, and a UV/X-ray observation coincided with the later spectrum. The optical spectra show strong coronal emission lines, including [Fe VII], [Fe X], [Fe XI], and [Fe XIV]. The Fe lines rise and then fall, except [Fe XIV] that appears late and rises. We observe increasing flux of narrow H α and H β and a decrease in broad H α flux. The coronal lines have full width at half-maximum ranging from ∼150−300 km s−1, suggesting they originate from a region between the broad- and narrow-line emitting gas. Between the optical flare and late-time observation, the X-ray spectrum softens dramatically. The 0.3–1 keV X-ray flux increases by a factor of ∼50, while the hard X-ray flux decreases by a factor of ∼6. Wide-field Infrared Survey Explorer fluxes also rose over the same period, indicating the presence of an infrared echo. With AT2017gge, AT2019qiz is one of two examples of a spectroscopically confirmed optical-UV TDE showing delayed coronal line emission, supporting speculations that Extreme Coronal Line Emitters in quiescent galaxies can be echos of unobserved past TDEs. We argue that the coronal lines, narrow lines, and infrared emission arise from the illumination of pre-existing material likely related to either a previous TDE or active galactic nucleus activity.
  •  
6.
  • Benhamou, S, et al. (författare)
  • Meta- and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk
  • 2002
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 23:8, s. 1343-1350
  • Tidskriftsartikel (refereegranskat)abstract
    • Susceptibility to lung cancer may in part be attributable to inter-individual variability in metabolic activation or detoxification of tobacco carcinogens. The glutathione S-transferase M1 (GSTM1) genetic polymorphism has been extensively studied in this context; two recent meta-analyses of case-control studies suggested an association between GSTM1 deletion and lung cancer. At least 15 studies have been published after these overviews. We undertook a new meta-analysis to summarize the results of 43 published case-control studies including >18 000 individuals. A slight excess of risk of lung cancer for individuals with the GSTM1 null genotype was found (odds ratio (OR) = 1.17, 95% confidence interval (CI) 1.07-1.27). No evidence of publication bias was found (P = 0.4), however, it is not easy to estimate the extent of such bias and we cannot rule out some degree of publication bias in our results. A pooled analysis of the original data of about 9500 subjects involved in 21 case-control studies from the International Collaborative Study on Genetic Susceptibility to Environmental Carcinogens (GSEC) data set was performed to assess the role of GSTM1 genotype as a modifier of the effect of smoking on lung cancer risk with adequate power. Analyses revealed no evidence of increased risk of lung cancer among carriers of the GSTM1 null genotype (age-, gender- and center-adjusted OR = 1.08, 95% CI 0.98-1.18) and no evidence of interaction between GSTM1 genotype and either smoking status or cumulative tobacco consumption.
  •  
7.
  •  
8.
  • Charalampopoulos, P., et al. (författare)
  • A detailed spectroscopic study of tidal disruption events
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectroscopically, tidal disruption events (TDEs) are characterized by broad (similar to 10(4) km s(-1)) emission lines and show a large diversity as well as different line profiles. After carefully and consistently performing a series of data reduction tasks including host galaxy light subtraction, we present here the first detailed, spectroscopic population study of 16 optical and UV TDEs. We study a number of emission lines prominent among TDEs including Hydrogen, Helium, and Bowen lines and we quantify their evolution with time in terms of line luminosities, velocity widths, and velocity offsets. We report a time lag between the peaks of the optical light curves and the peak luminosity of H alpha spanning between similar to 7 and 45 days. If interpreted as light echoes, these lags correspond to distances of similar to 2 - 12 x 10(16) cm, which are one to two orders of magnitudes larger than the estimated blackbody radii (R-BB) of the same TDEs and we discuss the possible origin of this surprisingly large discrepancy. We also report time lags for the peak luminosity of the He I 5876 angstrom line, which are smaller than the ones of H alpha for H TDEs and similar or larger for N III Bowen TDEs. We report that N III Bowen TDEs have lower H alpha velocity widths compared to the rest of the TDEs in our sample and we also find that a strong X-ray to optical ratio might imply weakening of the line widths. Furthermore, we study the evolution of line luminosities and ratios with respect to their radii (R-BB) and temperatures (T-BB). We find a linear relationship between H alpha luminosity and the R-BB (L-line proportional to R-BB) and potentially an inverse power-law relation with T-BB (L-line proportional to T-BB(-beta)), leading to weaker H alpha emission for T-BB >= 25 000 K. The He II/He I ratio becomes large at the same temperatures, possibly pointing to an ionization effect. The He II/H alpha ratio becomes larger as the photospheric radius recedes, implying a stratified photosphere where Helium lies deeper than Hydrogen. We suggest that the large diversity of the spectroscopic features seen in TDEs along with their X-ray properties can potentially be attributed to viewing angle effects.
  •  
9.
  • Charalampopoulos, P., et al. (författare)
  • AT 2020wey and the class of faint and fast tidal disruption events
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of the optical and ultraviolet properties of AT 2020wey, a faint and fast tidal disruption event (TDE) at 124.3 Mpc. The light curve of the object peaked at an absolute magnitude of M-g = 17.45 +/- 0.08 mag and a maximum bolometric luminosity of L-peak = (8.74 +/- 0.69) x 10(42) erg s 1, making it comparable to iPTF16fnl, the faintest TDE to date. The time from the last non-detection to the g-band peak is 23 +/- 2 days, and the rise is well described by L proportional to/ t(1.80 +/- 0.22). The decline of the bolometric light curve is described by a sharp exponential decay steeper than the canonical t(-5/3) power law, making AT 2020wey the fastest declining TDE to date. The multi-band light curve analysis shows first a slowly declining blackbody temperature of T-BB similar to 20 000 K around the peak brightness followed by a gradual temperature increase. The blackbody photosphere is found to expand at a constant velocity (similar to 1300 km s(-1)) to a value of R-BB similar to 3.5 x 10(14) cm before contracting rapidly. Multi-wavelength fits to the light curve indicate a complete disruption of a star of M-star = 0.11(-0.0)(+0.05) M-circle dot by a black hole of M-BH = 106(-0.09)(6.46+0.09) M-circle dot. Our spectroscopic dataset reveals broad (similar to 10(4) km s(-1)) Balmer and He II 4686 angstrom lines, with H alpha reaching its peak with a lag of similar to 8.2 days compared to the continuum. In contrast to previous faint and fast TDEs, there are no obvious Bowen fluorescence lines in the spectra of AT 2020wey. There is a strong correlation between the MOSFIT-derived black hole masses of TDEs and their decline rate. However, AT 2020wey is an outlier in this correlation, which could indicate that its fast early decline may be dictated by a different physical mechanism than fallback. After performing a volumetric correction to a sample of 30 TDEs observed between 2018 and 2020, we conclude that faint TDEs are not rare by nature; they should constitute up to similar to 50-60% of the entire population and their numbers could alleviate some of the tension between the observed and theoretical TDE rate estimates. We calculate the optical TDE luminosity function and we find a steep power-law relation dN=dL(g) proportional to / L-g(-2.36 +/- 0.16).
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy