SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pyper S.) "

Sökning: WFRF:(Pyper S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, Eun-Young, et al. (författare)
  • Play, Learn, and Teach Outdoors—Network (PLaTO-Net) : terminology, taxonomy, and ontology
  • 2022
  • Ingår i: International Journal of Behavioral Nutrition and Physical Activity. - : BioMed Central (BMC). - 1479-5868. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A recent dialogue in the field of play, learn, and teach outdoors (referred to as “PLaTO” hereafter) demonstrated the need for developing harmonized and consensus-based terminology, taxonomy, and ontology for PLaTO. This is important as the field evolves and diversifies in its approaches, contents, and contexts over time and in different countries, cultures, and settings. Within this paper, we report the systematic and iterative processes undertaken to achieve this objective, which has built on the creation of the global PLaTO-Network (PLaTO-Net). Methods: This project comprised of four major methodological phases. First, a systematic scoping review was conducted to identify common terms and definitions used pertaining to PLaTO. Second, based on the results of the scoping review, a draft set of key terms, taxonomy, and ontology were developed, and shared with PLaTO members, who provided feedback via four rounds of consultation. Third, PLaTO terminology, taxonomy, and ontology were then finalized based on the feedback received from 50 international PLaTO member participants who responded to ≥ 3 rounds of the consultation survey and dialogue. Finally, efforts to share and disseminate project outcomes were made through different online platforms. Results: This paper presents the final definitions and taxonomy of 31 PLaTO terms along with the PLaTO-Net ontology model. The model incorporates other relevant concepts in recognition that all the aspects of the model are interrelated and interconnected. The final terminology, taxonomy, and ontology are intended to be applicable to, and relevant for, all people encompassing various identities (e.g., age, gender, culture, ethnicity, ability). Conclusions: This project contributes to advancing PLaTO-based research and facilitating intersectoral and interdisciplinary collaboration, with the long-term goal of fostering and strengthening PLaTO’s synergistic linkages with healthy living, environmental stewardship, climate action, and planetary health agendas. Notably, PLaTO terminology, taxonomy and ontology will continue to evolve, and PLaTO-Net is committed to advancing and periodically updating harmonized knowledge and understanding in the vast and interrelated areas of PLaTO.
  •  
2.
  •  
3.
  • Wacker, A, et al. (författare)
  • Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy
  • 2020
  • Ingår i: Nucleic acids research. - : Oxford University Press (OUP). - 1362-4962 .- 0305-1048. ; 48:22, s. 12415-12435
  • Tidskriftsartikel (refereegranskat)abstract
    • The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5′ end, the ribosomal frameshift segment and the 3′-untranslated region (3′-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy