SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qiao Sibo) "

Sökning: WFRF:(Qiao Sibo)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Qiao, Sibo, et al. (författare)
  • A Pseudo-Siamese Feature Fusion Generative Adversarial Network for Synthesizing High-quality Fetal Four-chamber Views
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 27:3, s. 1193-1204
  • Tidskriftsartikel (refereegranskat)abstract
    • Four-chamber (FC) views are the primary ultrasound (US) images that cardiologists diagnose whether the fetus has congenital heart disease (CHD) in prenatal diagnosis and screening. FC views intuitively depict the developmental morphology of the fetal heart. Early diagnosis of fetal CHD has always been the focus and difficulty of prenatal screening. Furthermore, deep learning technology has achieved great success in medical image analysis. Hence, applying deep learning technology in the early screening of fetal CHD helps improve diagnostic accuracy. However, the lack of large-scale and high-quality fetal FC views brings incredible difficulties to deep learning models or cardiologists. Hence, we propose a Pseudo-Siamese Feature Fusion Generative Adversarial Network (PSFFGAN), synthesizing high-quality fetal FC views using FC sketch images. In addition, we propose a novel Triplet Generative Adversarial Loss Function (TGALF), which optimizes PSFFGAN to fully extract the cardiac anatomical structure information provided by FC sketch images to synthesize the corresponding fetal FC views with speckle noises, artifacts, and other ultrasonic characteristics. The experimental results show that the fetal FC views synthesized by our proposed PSFFGAN have the best objective evaluation values: SSIM of 0.4627, MS-SSIM of 0.6224, and FID of 83.92, respectively. More importantly, two professional cardiologists evaluate healthy FC views and CHD FC views synthesized by our PSFFGAN, giving a subjective score that the average qualified rate is 82% and 79%, respectively, which further proves the effectiveness of the PSFFGAN. 
  •  
2.
  • Qiao, Sibo, et al. (författare)
  • DPC-MSGATNet : dual-path chain multi-scale gated axial-transformer network for four-chamber view segmentation in fetal echocardiography
  • 2023
  • Ingår i: Complex & Intelligent Systems. - : Springer Nature. - 2199-4536 .- 2198-6053. ; :9, s. 4503-4519
  • Tidskriftsartikel (refereegranskat)abstract
    • Echocardiography is essential in evaluating fetal cardiac anatomical structures and functions when clinicians conduct early treatment and screening for congenital heart defects, a common and intricate fetal malformation. Nevertheless, the prenatal detection rate of fetal CHD remains low since the peculiarities of fetal cardiac structures and the variousness of fetal CHD. Precisely segmenting four cardiac chambers can assist clinicians in analyzing cardiac morphology and further facilitate CHD diagnosis. Hence, we design a dual-path chain multi-scale gated axial-transformer network (DPC-MSGATNet) that simultaneously models global dependencies and local visual cues for fetal ultrasound (US) four-chamber (FC) views and further accurately segments four chambers. Our DPC-MSGATNet includes a global and a local branch that simultaneously operates on an entire FC view and image patches to learn multi-scale representations. We design a plug-and-play module, Interactive dual-path chain gated axial-transformer (IDPCGAT), to enhance the interactions between global and local branches. In IDPCGAT, the multi-scale representations from the two branches can complement each other, capturing the same region’s salient features and suppressing feature responses to maintain only the activations associated with specific targets. Extensive experiments demonstrate that the DPC-MSGATNet exceeds seven state-of-the-art convolution- and transformer-based methods by a large margin in terms of F1 and IoU scores on our fetal FC view dataset, achieving a F1 score of 96.87% and an IoU score of 93.99%. The codes and datasets can be available at https://github.comQiaoSiBo/DPC-MSGATNet.
  •  
3.
  • Qiao, Sibo, et al. (författare)
  • HCMMNet : Hierarchical Conv-MLP-Mixed Network for Medical Image Segmentation in Metaverse for Consumer Health
  • 2024
  • Ingår i: IEEE transactions on consumer electronics. - : Institute of Electrical and Electronics Engineers (IEEE). - 0098-3063 .- 1558-4127. ; 70:1, s. 2078-2089
  • Tidskriftsartikel (refereegranskat)abstract
    • In the burgeoning metaverse for consumer health (MCH), medical image segmentation methods with high accuracy and generalization capability are essential to drive personalized healthcare solutions and enhance the patient experience. To address the inherent challenges of capturing complex structures and features in medical image segmentation, we propose a convolutional neural network (CNN) and multi-layer-perceptron (MLP) mixed module named HCMM, which hierarchically incorporates local priors of CNN into fully-connected (FC) layers, ingeniously capturing specific details and a broader range of contextual information of the focused object from diverse perspectives. Then, we propose an MLP-based information fusion module (MIF) designed to dynamically merge feature maps of varying levels from different pathways, enhancing feature expression and discriminative power. Based on the above-proposed modules, we design a novel segmentation model, HCMMNet, which can adeptly capture feature maps from input medical images at different scales and perspectives. Through comparative experiments, we demonstrate the outstanding performance of the HCMMNet for medical image segmentation on three publicly available datasets and one self-organized dataset. Notably, our HCMMNet showcases remarkable efficacy while maintaining an extraordinarily lightweight profile, weighing in at a mere 3M, rendering it ideal for MCH application.
  •  
4.
  • Qiao, Sibo, et al. (författare)
  • SPReCHD : Four-Chamber Semantic Parsing Network for Recognizing Fetal Congenital Heart Disease in Medical Metaverse
  • 2024
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 28:6, s. 3672-3682
  • Tidskriftsartikel (refereegranskat)abstract
    • Echocardiography is essential for evaluating cardiac anatomy and function during early recognition and screening for congenital heart disease (CHD), a widespread and complex congenital malformation. However, fetal CHD recognition still faces many difficulties due to instinctive fetal movements, artifacts in ultrasound images, and distinctive fetal cardiac structures. These factors hinder capturing robust and discriminative representations from ultrasound images, resulting in CHD's low prenatal detection rate. Hence, we propose a multi-scale gated axial-transformer network (MSGATNet) to capture fetal four-chamber semantic information. Then, we propose a SPReCHD: four-chamber semantic parsing network for recognizing fetal CHD in the clinical treatment of the medical metaverse, integrating MSGATNet to segment and locate four-chamber arbitrary contours, further capturing distinguished representations for the fetal heart. Comprehensive experiments indicate that our SPReCHD is sufficient in recognizing fetal CHD, achieving a precision of 95.92%, a recall of 94%, an accuracy of 95%, and a F1 score of 94.95% on the test set, dramatically improving the fetal CHD's prenatal detection rate.
  •  
5.
  • Wang, Shudong, et al. (författare)
  • MSHGANMDA : Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 27:10, s. 4639-4648
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGATMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGATMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNAdisease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGATMDA in predicting unknown diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy