SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qiu Zhen) "

Sökning: WFRF:(Qiu Zhen)

  • Resultat 1-10 av 71
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kristan, Matej, et al. (författare)
  • The Ninth Visual Object Tracking VOT2021 Challenge Results
  • 2021
  • Ingår i: 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021). - : IEEE COMPUTER SOC. - 9781665401913 ; , s. 2711-2738
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2021 is the ninth annual tracker benchmarking activity organized by the VOT initiative. Results of 71 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in recent years. The VOT2021 challenge was composed of four sub-challenges focusing on different tracking domains: (i) VOT-ST2021 challenge focused on short-term tracking in RGB, (ii) VOT-RT2021 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2021 focused on long-term tracking, namely coping with target disappearance and reappearance and (iv) VOT-RGBD2021 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2021 dataset was refreshed, while VOT-RGBD2021 introduces a training dataset and sequestered dataset for winner identification. The source code for most of the trackers, the datasets, the evaluation kit and the results along with the source code for most trackers are publicly available at the challenge website(1).
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Arvizu, Miguel A, et al. (författare)
  • Electrochromic WO3 thin films attain unprecedented durability by potentiostatic pretreatment
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 7:6, s. 2908-2918
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochromic windows and glass facades are able to impart energy efficiency jointly with indoor comfort and convenience. Long-term durability is essential for practical implementation of this technology and has recently attracted broad interest. Here we show that a simple potentiostatic pretreatment of sputterdeposited thin films of amorphous WO3-the most widely studied electrochromic material-can yield unprecedented durability for charge exchange and optical modulation under harsh electrochemical cycling in a Li-ion-conducting electrolyte and effectively evades harmful trapping of Li. The pretreatment consisted of applying a voltage of 6.0 V vs. Li/Li+ for several hours to a film backed by a transparent conducting In2O3: Sn layer. Associated compositional and structural modifications were probed by several techniques, and improved durability was associated with elemental intermixing at the WO3/ITO and ITO/glass boundaries as well as with carbonaceous solid-electrolyte interfacial layers on the WO3 films. Our work provides important new insights into long-term durability of ion-exchange-based devices.
  •  
7.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • Impedance Spectroscopy Modeling of Nickel–Molybdenum Alloys on Porous and Flat Substrates for Applications in Water Splitting
  • 2019
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:39, s. 23890-23897
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen production by splitting water using electrocatalysts powered by renewable energy from solar or wind plants is one promising alternative to produce a carbon-free and sustainable fuel. Earth-abundant and nonprecious metals are, here, of interest as a replacement for scarce and expensive platinum group catalysts. Ni–Mo is a promising alternative to Pt, but the type of the substrate could ultimately affect both the initial growth conditions and the final charge transfer in the system as a whole with resistive junctions formed in the heterojunction interface. In this study, we investigated the effect of different substrates on the hydrogen evolution reaction (HER) of Ni–Mo electrocatalysts. Ni–Mo catalysts (30 atom % Ni, 70 atom % Mo) were sputtered on various substrates with different porosities and conductivities. There was no apparent morphological difference at the surface of the catalytic films sputtered on the different substrates, and the substrates were classified from microporous to flat. The electrochemical characterization was carried out with linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) in the frequency range 0.7 Hz–100 kHz. LSV measurements were carried out at direct current (DC) potentials between 200 and −400 mV vs the reversible hydrogen electrode (RHE) in 1 M NaOH encompassing the HER. The lowest overpotentials for HER were obtained for films on the nickel foam at all current densities (−157 mV vs RHE @ 10 mA cm–2), and the overpotentials increased in the order of nickel foil, carbon cloth, fluorine-doped tin oxide, and indium tin oxide glass. EIS data were fitted with two equivalent circuit models and compared for different DC potentials and different substrate morphologies and conductivities. By critical evaluation of the data from the models, the influence of the substrates on the reaction kinetics was analyzed in the high- and low-frequency regions. In the high-frequency region, a strong substrate dependence was seen and interpreted with a Schottky-type barrier, which can be rationalized as being due to a potential barrier in the material heterojunctions or a resistive substrate–film oxide/hydroxide. The results highlight the importance of substrates, the total charge transfer properties in electrocatalysis, and the relevance of different circuit components in EIS and underpin the necessity to incorporate high-conductivity, chemically inert, and work-function-matched substrate–catalysts in the catalyst system.
  •  
8.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • NiMoV and NiO-based catalysts for efficient solar-driven water splitting using thermally integrated photovoltaics in a scalable approach
  • 2021
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, a trimetallic NiMoV catalyst is developed for the hydrogen evolution reaction and characterized with respect to structure, valence, and elemental distribution. The overpotential to drive a 10 mA cm−2 current density is lowered from 94 to 78 mV versus reversible hydrogen electrode by introducing V into NiMo. A scalable stand-alone system for solar-driven water splitting was examined for a laboratory-scale device with 1.6 cm2 photovoltaic (PV) module area to an up-scaled device with 100 cm2 area. The NiMoV cathodic catalyst is combined with a NiO anode in alkaline electrolyzer unit thermally connected to synthesized (Ag,Cu) (In,Ga)Se2 ((A)CIGS) PV modules. Performance of 3- and 4-cell interconnected PV modules, electrolyzer, and hydrogen production of the PV electrolyzer are examined between 25°C and 50°C. The PV-electrolysis device having a 4-cell (A)CIGS under 100 mW cm−2 illumination and NiMoV-NiO electrolyzer shows 9.1% maximum and 8.5% averaged efficiency for 100 h operation.
  •  
9.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • Scalable and thermally-integrated solar water-splitting modules using Ag-doped Cu(In,Ga)Se2 and NiFe layered double hydroxide nanocatalysts
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:22, s. 12079-12091
  • Tidskriftsartikel (refereegranskat)abstract
    • Photovoltaic (PV) electrolysis is an important and powerful technology for environmentally-friendly fuel production based on solar energy. By directly coupling solar cell materials to electrochemical systems to perform water electrolysis, solar energy can be converted into hydrogen fuel utilizing locally-generated heat and avoid losses from DC-DC convertors and power grid transmission. Although there have been significant contributions to the photoelectrochemical and PV-electrolysis field using isolated laboratory cells, the capacity to upscale and retain high levels of efficiency in larger modules remains a critical issue for widespread use and application. In this study, we develop thermally-integrated, solar-driven water-splitting device modules using AgCu(In,Ga)Se2 (ACIGS) and an alkaline electrolyzer system with NiFe-layered double hydroxide (LDH) nanocatalysts with devices of 82-100 cm2 area. The Ga-content in the ACIGS solar cells is tuned to achieve an optimal voltage for the catalyst system, and the average efficiencies and durability of the PV-electrolyzer were tested in up to seven-day indoor and 21 day outdoor operations. We achieved a solar-to-hydrogen (STH) module efficiency of 13.4% from gas volume measurements for the system with a six-cell CIGS-electrolyzer module with an active area of 82.3 cm2 and a 17.27% PV module efficiency under 100 mW cm−2 illumination, and thus 77% electricity-to-hydrogen efficiency at one full sun. Outdoor tests under mid-Europeen winter conditions exhibited an STH efficiency between 10 and 11% after the initial activation at the installation site in Jülich, Germany, in December 2020, despite challenging outdoor-test weather conditions, including sub-zero temperatures. 
  •  
10.
  • Bulovaite, Edita, et al. (författare)
  • A brain atlas of synapse protein lifetime across the mouse lifespan
  • 2022
  • Ingår i: Neuron. - : Elsevier BV. - 0896-6273 .- 1097-4199. ; 110:24, s. 4057-
  • Tidskriftsartikel (refereegranskat)abstract
    • The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 71

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy