SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qiuming Liao) "

Sökning: WFRF:(Qiuming Liao)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arlock, Per, et al. (författare)
  • Excitation and contraction of cardiac muscle and coronary arteries of brain-dead pigs
  • 2023
  • Ingår i: FASEB BioAdvances. - : Wiley. - 2573-9832. ; 5:2, s. 71-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Excitability and contraction of cardiac muscle from brain-dead donors critically influence the success of heart transplantation. Membrane physiology, Ca2+-handling, and force production of cardiac muscle and the contractile properties of coronary arteries were studied in hearts of brain-dead pigs. Cardiac muscle and vascular function after 12 h brain death (decapitation between C2 and C3) were compared with properties of fresh tissue. In both isolated cardiomyocytes (whole-cell patch clamp) and trabecular muscle (conventional microelectrodes), action potential duration was shorter in brain dead, compared to controls. Cellular shortening and Ca2+ transients were attenuated in the brain dead, and linked to lower mRNA expression of L-type calcium channels and a slightly lower ICa,L, current, as well as to a lower expression of phospholamban. The current–voltage relationship and the current above the equilibrium potential of the inward K+ (IK1) channel were altered in the brain-dead group, associated with lower mRNA expression of the Kir2.2 channel. Delayed K+ currents were detected (IKr, IKs) and were not different between groups. The transient outward K+ current (Ito) was not observed in the pig heart. Coronary arteries exhibited increased contractility and sensitivity to the thromboxane analogue (U46619), and unaltered endothelial relaxation. In conclusion, brain death involves changes in cardiac cellular excitation which might lower contractility after transplantation. Changes in the inward rectifier K+ channel can be associated with an increased risk for arrhythmia. Increased reactivity of coronary arteries may lead to increased risk of vascular spasm, although endothelial relaxant function was well preserved.
  •  
2.
  • Bozovic, Gracijela, et al. (författare)
  • Circulation stabilizing therapy and pulmonary high-resolution computed tomography in a porcine brain-dead model.
  • 2016
  • Ingår i: Acta Anaesthesiologica Scandinavica. - : Wiley. - 0001-5172. ; 60:1, s. 93-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently 80% of donor lungs are not accepted for transplantation, often due to fluid overload. Our aim was to investigate if forced fluid infusion may be replaced by a new pharmacological therapy to stabilize circulation after brain death in an animal model, and to assess therapy effects on lung function and morphology trough blood gas parameters and state-of-the-art High-resolution CT (HRCT).
  •  
3.
  • Budrikis, Algimantas, et al. (författare)
  • Effects of cardioplegic flushing, storage, and reperfusion on coronary circulation in the pig
  • 1999
  • Ingår i: Annals of Thoracic Surgery. - 1552-6259. ; 67:5, s. 1345-1349
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The aim of the study was to investigate how flush-perfusion of the heart with cold cardioplegic solution, 2 or 12 hours of cold ischemic storage, and 24 hours of reperfusion affect coronary endothelial function and coronary vascular resistance. METHODS: Porcine coronary arterial endothelial and smooth muscle function was studied in organ baths. An adult porcine working heart model was used to investigate coronary vascular resistance after 24 hours of reperfusion. RESULTS: Flushing the heart with 1 L of St. Thomas' cardioplegic solution, using a perfusion pressure of 60 to 65 mm Hg, significantly reduced endothelium-dependent relaxation. Flushing followed by 12 hours of storage gravely impaired endothelium-dependent relaxation, and 24 hours of reperfusion worsened it still more. CONCLUSIONS: Flushing the heart with cold cardioplegic solution impairs endothelium-dependent relaxation, as does prolonged cold ischemic storage. Reperfusion of injured coronary endothelium may injure it still more. A correlation was found (p < 0.001) between high coronary vascular resistance and low endothelium-dependent relaxation.
  •  
4.
  • Critchley, William R., et al. (författare)
  • Non-ischemic Heart Preservation via Hypothermic Cardioplegic Perfusion Induces Immunodepletion of Donor Hearts Resulting in Diminished Graft Infiltration Following Transplantation
  • 2020
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Many donor organs contain significant leukocyte reservoirs which upon transplantation activate recipient leukocytes to initiate acute rejection. We aimed to assess whether non-ischemic heart preservation via ex vivo perfusion promotes immunodepletion and alters the inflammatory status of the donor organ prior to transplantation. Methods: Isolated porcine hearts underwent ex vivo hypothermic, cardioplegic perfusion for 8 h. Leukocyte populations were quantified in left ventricle samples by flow cytometry. Cell-free DNA, cytokines, and chemokines were quantified in the perfusate. Tissue integrity was profiled by targeted proteomics and a histological assessment was performed. Heterotopic transplants comparing ex vivo hypothermic preservation and static cold storage were utilized to assess graft infiltration as a solid clinical endpoint. Results: Ex vivo perfusion significantly immunodepleted myocardial tissue. The perfusate displayed a selective, pro-inflammatory cytokine/chemokine pattern dominated by IFN-γ. The tissue molecular profile was improved following perfusion by diminished expression of nine pro-apoptotic and six ischemia-associated proteins. Histologically, no evidence of tissue damage was observed and cardiac troponin I was low throughout perfusion. Cell-free DNA was detected, the source of which may be necrotic/apoptotic leukocytes. Post-transplant graft infiltration was markedly reduced in terms of both leucocyte distribution and intensity of foci. Conclusions: These findings demonstrate that ex vivo perfusion significantly reduced donor heart immunogenicity via loss of resident leukocytes. Despite the pro-inflammatory cytokine pattern observed, a pro-survival and reduced ischemia-related profile was observed, indicating an improvement in graft viability by perfusion. Diminished graft infiltration was observed in perfused hearts compared with those preserved by static cold storage following 48 h of transplantation.
  •  
5.
  • Liang, YC, et al. (författare)
  • QT dispersion failed to estimate the global dispersion of ventricular repolarization measured using monophasic action potential mapping technique in swine and patients
  • 2005
  • Ingår i: Journal of Electrocardiology. - : Elsevier BV. - 1532-8430 .- 0022-0736. ; 38:1, s. 19-27
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to evaluate whether the QT dispersion measured from 12-lead electrocardiogram (ECG) can estimate the global dispersion of ventricular repolarization (DVR) measured using a monophasic action potential (MAP) mapping technique. Monophasic action potentials were recorded from 75 +/- 12 left ventricular sites in 10 pigs and from 48 +/- 16 left or right ventricular sites in 15 patients using the CARTO mapping system. The maximum DVRs in both end-of-repolarization and MAP duration among all the mapped sites were calculated and termed as global DVR for each measurement. QT intervals, QT(peak) and QT(end), were measured from the 12-lead ECG, and QT dispersions; namely the differences between the maximum and the minimum of the QTpeak and QT(end) were calculated. We found that QT dispersions were significantly smaller than (P < .05) and poorly correlated with the global DVRs both in pigs and patients. Bland-Altman agreement analysis demonstrated a marked variation of the differences and an obvious lack of agreement between the results obtained using the ECG and the MAP methods. In our patients, the global DVR increased markedly during ventricular tachycardia as compared with that during sinus rhythm (P < .05), whereas there was no significant difference in QT dispersion between these 2 subgroups. In conclusion, QT dispersion on the surface ECG could not estimate the global DVR measured using the MAP mapping technique. These findings are not consistent with some previously reported observations, suggesting the need for reappraisal of the electrophysiological implications of QT dispersion.
  •  
6.
  • Liao, Qiuming (författare)
  • LUCAS - Lund University Cardiopulmonary Assist System
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lund University Cardiopulmonary Assist System (LUCAS) is a mechanical device providing automatic 5 cm deep chest compressions and active decompressions back to normal anatomical position with a frequency of 100 per minute, and a duty cycle of 50%, i.e., LUCAS is constructed to give chest compressions according to the latest international guidelines in cardiopulmonary resuscitation (CPR). The aim of the thesis was to study cardiac arrest using different porcine models of ventricular fibrillation. Four hypotheses were formulated: 1. LUCAS-CPR is superior to manual CPR regarding coronary perfusion pressure (CPP) and return of spontaneous circulation (ROSC). 2. Hypothermic LUCAS-CPR is superior to normothermic LUCAS-CPR in treating prolonged ventricular fibrillation. 3. The rate of ROSC after prolonged ventricular fibrillation will increase if LUCAS-CPR is given before defibrillation, and if defibrillation is given during on-going chest compressions. 4. LUCAS-CPR will cause fewer rib fractures than manual CPR. LUCAS-CPR gave significantly higher rates of ROSC and significantly higher CPP than manual CPR. LUCAS-CPR combined with surface cooling to 34°C was superior to normothermic LUCAS-CPR during 1 hour of CPR for ventricular fibrillation. Defibrillation was more effective to obtain ROSC after prolonged ventricular fibrillation if chest compressions were done before the shock, and if the shock was given during on-going LUCAS-CPR. LUCAS-CPR caused significantly fewer rib fractures during 20 minutes of CPR compared to manual CPR.
  •  
7.
  • Liao, Qiuming, et al. (författare)
  • Manual versus mechanical cardiopulmonary resuscitation. An experimental study in pigs
  • 2010
  • Ingår i: BMC Cardiovascular Disorders. - : Springer Science and Business Media LLC. - 1471-2261. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Optimal manual closed chest compressions are difficult to give. A mechanical compression/ decompression device, named LUCAS, is programmed to give compression according to the latest international guidelines (2005) for cardiopulmonary resuscitation (CPR). The aim of the present study was to compare manual CPR with LUCAS-CPR. Methods: 30 kg pigs were anesthetized and intubated. After a base-line period and five minutes of ventricular fibrillation, manual CPR (n = 8) or LUCAS-CPR (n = 8) was started and run for 20 minutes. Professional paramedics gave manual chest compression's alternating in 2-minute periods. Ventilation, one breath for each 10 compressions, was given to all animals. Defibrillation and, if needed, adrenaline were given to obtain a return of spontaneous circulation (ROSC). Results: The mean coronary perfusion pressure was significantly (p < 0.01) higher in the mechanical group, around 20 mmHg, compared to around 5 mmHg in the manual group. In the manual group 54 rib fractures occurred compared to 33 in the LUCAS group (p < 0.01). In the manual group one severe liver injury and one pressure pneumothorax were also seen. All 8 pigs in the mechanical group achieved ROSC, as compared with 3 pigs in the manual group. Conclusions: LUCAS-CPR gave significantly higher coronary perfusion pressure and significantly fewer rib fractures than manual CPR in this porcine model.
  •  
8.
  • Lindberg, Lars, et al. (författare)
  • The effects of epinephrine/norepinephrine on end-tidal carbon dioxide concentration, coronary perfusion pressure and pulmonary arterial blood flow during cardiopulmonary resuscitation
  • 2000
  • Ingår i: Resuscitation. - 1873-1570. ; 43:2, s. 129-140
  • Tidskriftsartikel (refereegranskat)abstract
    • End-tidal CO2 concentration correlates with pulmonary blood flow during cardiopulmonary resuscitation and has been claimed to be a useful tool to judge the effectiveness of chest compression. A high concentration of end-tidal CO2 has been related to a better outcome. However, most authors have noticed a decrease in end-tidal CO2 concentration after administration of epinephrine, concomitant with an increase in coronary perfusion pressure and an increased incidence of return of spontaneous circulation. This study was performed to evaluate changes in end-tidal CO2 concentration after injection of vasopressors during cardiopulmonary resuscitation and to investigate the time-course of the response and possible explanations for it. After 1 min of electrically induced cardiac arrest and 5 min of chest compressions, 18 pigs were randomly assigned to receive 0.045 mg kg(-1) epinephrine, 0.045 mg kg(-1) norepinephrine or no drug. After another 4 min of chest compressions the pigs were defibrillated. End-tidal CO2, pulmonary blood flow and coronary perfusion pressure decreased immediately after the induction of cardiac arrest, increased slightly during chest compressions and increased initially to supernormal levels after the return of spontaneous circulation. Injection of epinephrine or norepinephrine during chest compressions decreased end-tidal CO2 51 +/- 2%, (mean +/- S.E.M.), and 43 +/- 1%, respectively, and pulmonary blood flow by 134 +/- 13 and 125 +/- 16%, respectively, within 1 min, simultaneously increasing coronary perfusion pressure from 10 +/- 2 to 45 +/- 5 mm Hg and from 11 +/- 1 to 38 +/- 5 mm Hg, respectively. The coronary perfusion pressure slowly fell, but the effects on end-tidal CO2 and pulmonary blood flow were prolonged. In conclusion, vasopressors increased coronary perfusion pressure and the likelihood of a return of spontaneous circulation, but decreased end-tidal CO2 concentration and induced a critical deterioration in cardiac output and thus oxygen delivery in this model of cardiopulmonary resuscitation.
  •  
9.
  • Längin, Matthias, et al. (författare)
  • Cold non-ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig-to-baboon xenotransplantation
  • 2021
  • Ingår i: Xenotransplantation. - : Wiley. - 0908-665X .- 1399-3089. ; 28:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. Methods: Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient’s kidney, liver and coagulation functions. Results: In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. Conclusions: While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation.
  •  
10.
  • Längin, Matthias, et al. (författare)
  • Consistent success in life-supporting porcine cardiac xenotransplantation
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 564:7736, s. 430-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart transplantation is the only cure for patients with terminal cardiac failure, but the supply of allogeneic donor organs falls far short of the clinical need1–3. Xenotransplantation of genetically modified pig hearts has been discussed as a potential alternative4. Genetically multi-modified pig hearts that lack galactose-α1,3-galactose epitopes (α1,3-galactosyltransferase knockout) and express a human membrane cofactor protein (CD46) and human thrombomodulin have survived for up to 945 days after heterotopic abdominal transplantation in baboons5. This model demonstrated long-term acceptance of discordant xenografts with safe immunosuppression but did not predict their life-supporting function. Despite 25 years of extensive research, the maximum survival of a baboon after heart replacement with a porcine xenograft was only 57 days and this was achieved, to our knowledge, only once6. Here we show that α1,3-galactosyltransferase-knockout pig hearts that express human CD46 and thrombomodulin require non-ischaemic preservation with continuous perfusion and control of post-transplantation growth to ensure long-term orthotopic function of the xenograft in baboons, the most stringent preclinical xenotransplantation model. Consistent life-supporting function of xenografted hearts for up to 195 days is a milestone on the way to clinical cardiac xenotransplantation7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy